您好,欢迎来到榕意旅游网。
搜索
您的当前位置:首页八年级数学期中总结(4篇)

八年级数学期中总结(4篇)

来源:榕意旅游网

八年级数学期中总结

  实数的概念

  实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的'实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

  实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

  实数有什么范围

  在实数范围内,是指对于全体实数都成立,实数包括有理数和无理数,也可以分为正实数,0和负实数,不只是大于等于0,还包括负实数。

  整数和小数的集合也是实数,实数的定义是:有理数和无理数的集合。

  而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数。

  所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。

  实数的性质

  1.基本运算:

  实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。

  实数加、减、乘、除(除数不为零)、平方后结果还是实数。

  任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

  有理数范围内的运算律、运算法则在实数范围内仍适用:

  交换律:a+b=b+a,ab=ba

  结合律:(a+b)+c=a+(b+c)

  分配律:a(b+c)=ab+ac

  2.实数的相反数:

  实数的相反数的意义和有理数的相反数的意义相同。

  实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。

  实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

  3.实数的绝对值:

  实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;

  一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是:|a|

  ①a为正数时,|a|=a(不变)

  ②a为0时,|a|=0

  ③a为负数时,|a|=a(为a的相反数)

  (任何数的绝对值都大于或等于0,因为距离没有负的。)

  4实数的倒数:

  实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a(a≠0)

  初中数学分式的运算知识点

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

  一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为“△”。

八年级数学期中总结

  一、试卷特点

  1、面向全体学生,注重基础知识与基本技能的考查

  2、题型多样化,注重学生各方面能力的考查,如计算能力,识图能力,推理能力,探究能力等,在这张试卷上均有体现

  3、知识涉及面广,考查的知识点较全面

  4、有两大试题在复习卷中出现过,数不会太低,但最终估分有严重失误。

  二、批卷与学生分析

  我们的疑惑:本组教师团结协作,集备很充分,复习全面,也花了很大的精力,但感觉成绩一般,我们重新审视这份试卷并积极反思如下:

  1、计算能力有待提高,送分题成为我们的失分题

  可能是教师对教材认识有偏差,觉得对平方根,立方根,绝对值的考查不会以方程的形式出现,只会出现在填空题中,故没有加强计算训练,导致计算失分率高

  2、学生理解题意有偏差

  如第19题,学生因读不懂题意而难以建模,其实它是道简单的勾股定理题,并以失6分为代价;第25题不知道何为“验证”,学生理解有误,有50%的人失去了这2分。

  3、学生知识的迁移能力较差

  如第10题,第13题,只不过把复习题的条成功的喜悦;第16题把原来的等腰三角形改成了等边三角形,其实解题方法是一样的,但是学生只记住了原题的答案;第23题,这道题的失分率最高,全校只有12位学生讨论了两种情况,其余学生均在该题中失了3分,仔细想来,平时在讲解等腰三角形的有关边、角问题时经常要用到分类思想,分边是腰还是底边,分角是钝角,直角还是锐角,本题对三角形就应该分是钝角,锐角还是直角三角形,但只有见到过该题的12位同学做出来了,说明学生知识的迁移能力较差,只会就题论题,不会灵活运用所学知识。

  4、解决较为复杂题时,缺乏自信,导致解题思路混乱

  5、分析问题的方法与能力,特别是证明推理能力,中下等学生水平急待提高

  6、几何证明的增加,导致两极分化严重,但这也是试卷的一个不足:证明题没有梯度,应设置几个小问题,让不同层次的学生发挥应有的水平

  三、今后举措

  1、平时应立足高与延伸

  2、加强习惯培养,如(1)计算能力的提高,要求学生少用计算器;(2)培养学生证明过程有条理的表达,强调推理的严谨性;(3)规范学生的作业、订正习惯,能及时纠错找原因

  3、落实

  析问题,开拓思维,生对知识的猜想、探索过程,而不仅仅追求一个结果,培养学生知识技能情感各方面发展。

  4、关注学生的发展,并做好防差补差工作,从以下几点入手:

  (1)加强对后进生的个别辅导,增强自信

  (2)作业批改细致化,个别学生面批加以辅导

  (3)

  学,对差生适当降低要求,让他们也获得成功的喜悦

  5、不断提高教师自身素质,增强教师的个人魅力,提高学生学习数学的兴趣,

  本次期中数学练习整体看较偏重几何知识,一百分试卷中有八十五分考查了几何知识,且集中考察了平行四边形的性质与判定,考察的知识点较单一,不够全面。填空,选择题难度较大,对学生的能力要求也教高,尤其是中下等学生。

  其中,填空题2、4、6、9、13选择题13、14、15、16、19、解答题的21、24、26、28题失分率较高,这些题目对学生的理解能力和解题的灵活性要求较高。

  从学生的答卷情况中叶反映了存在的问题:

  1力不过关,解题疏习品质的教育急需加强.如填空题第二题,尽管考查的要求超出学生的能力要求,但答题时近一半学生审题时没有注意前后单位的不统一,作图题中有部分学生审题时疏忽了题目要求所画三角形各边为有理数这一条

  绩偏低的学生几何得分率更是偏低.主要表现不能熟练运用几何语言去表达和解决问题;不会规范作图;对几何基本图形和性质缺乏认识.单的几何题.

  3.试卷中,部分学生数学语言表达和解题格式的不规范、不准确,这也是几何题答题的一个难点。

  4.几何学困生较多,这份试卷对成绩偏低学生来说得分率几乎没有.导致了很多超低分的出现。因提高数学教学质量,任务依然艰巨.

  中等及以下学生,使每个学生掌握相应基础知识、基本技能,使学生学有所得,积攒后劲。

  2、通过“做中学”,抓好“自主探究”环节,设计出精致准确的学案,提高学生学习的兴趣。在“质疑求解”阶段,多照顾学困生,多提问,尽量做到优差兼顾。

  3、加强钻研。

  4、注意基础知识与实际问题相融全,加强应用能力的培养。

  5、训练学生书写工整,格式规范,步骤简洁完整。

  对来看,只有小部分学生都发挥了正常水平,另一小部分同学通过半个月的强化复习,虽然有了一定程度的进步,但是中间段的学生的成绩有待加强。下面,我对考试中出现的.具体情况作如下细致的分析:

  一、试卷分析

  本次考试的命题范围:人教版八年级上册,第十一章到第十三章的内容,完全根据新。其中填空题共10小题,每空3分,共30分;选择题共6题,每小题3分,共18分;解答题共9小题,共72分。第十一章有关知识点:全等三角形的概念,判定定理,角平分线的判定和性质定理。第十二章有关知识点:轴对称性质定理,作轴对称图形,等腰三角形性质。第十三章有关知识点:平方根定义,立方根的定义,实数运算等内容,教学重点和难点都有考察到,基础题覆盖面还是很广的,基础稍扎实的学生把自己会的题目分数拿到基本及格来讲还是很容易的,整体看试卷的难度适中,难易结合,并且有一定梯度。

  二、

  试卷难度不大,有些题型耳熟能详,是平时学习及复习检测中遇见过的题型,学生容易得到基本分,但有些学生的成绩还是不尽人意。凭简单的记忆,忽略细节,粗心大意,不认真审题,造成失误。平时没有养成良好的学习习惯。

  2、基础知识不扎实,主要表现在:

  (1)填空题最高分为18,最低得分为2学生做不好的主要是对学过知识遗忘,由自动放弃了,另外一个原因是无法解读题意,无从下手,;题12则需要较全面的综合理解能力和计算能力,在做这个题目的时候,学生的判别思维比较差,只考虑了一种情况。

  (2)选择题比较简单,但还是由识点掌握不到位,如公式记忆错误,或计算不过关。

  (3)解答题的跨度比较大的。21、22均属几道题的得分比较正常,但得分结果却很不尽人意,因为得分率还是很低,主要原因首先是符号决定错误;再则是合并同类项的方法没有掌握。后两题属须理解才能解决好。所以我们要以

  以学生发展为本,加强数学思维能力的培养。积极实行探究性学习,激发学生思考,培养学生[创新意识和创新能力。

  过程(本,加强对概念的教学,加强基础知识的教学,这虽然是老生常谈,却是个不易做好的问题,故要做到备

  现象日趋严重.对学习有困难的学生,要给予及时的关照与帮助,要鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,发表自己的看法;要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。对他们提供足够的材料,指导他们阅读,发展他们的数学才能。加强师生交流,做好培优、扶中、补差工作。

  3、指导学生认真审题,具体问题具体分析,尽量让学生独立去揭示结论的产生与形成过程,不要急。

  4、在解题过程中,要从不同角度、不同层次、多方位来考虑问题。要提高学生的计算准确率,多注意培养学生[题能力及理解能力,注意逻辑思维训练。要培养学生[观察、归纳和概括能力,提高学生的应变能力和综合解决问题的能力。

  5、培养学生[发散思维能力、严谨性和最优化解题思路。注重代数式求值要先化简后代入求值的训练,既要弄清解法的来龙去脉,又要注重计算的多方面验算。注意解答题计算推理过程的示范性,使学生确实形成良好的解题规范及书写习惯。提高计算能力,注意数学思想方法在解题过程中的体现与反思。

  6、在教学中手练习的时间较少,学生未能真正掌握目标要求。学生更需

  与知识的形成过程,体验研究方法。数学概念、定理、法则等知识的形成过程,往往要经历观察、分析、综合、归纳、类比、猜想和证明过程,在知识的形成过程中,可以激发学习的情趣,学会研究的策略和方法,它比掌握知识结论本身更重要。在考试中,由就束手无策的例子是较多的。要让每个学生通过自己内心的体验和主动参与去学习数学。教师的角色要从知识的传播者者;教学活动过程中要突出学生的主体参与,要引导学生多读、多议、多想、多练,只有这样,产生的新知识才能越真、越完善、越易于迁移。

八年级数学期中总结

  1、实数的概念及分类

  ①实数的分类

  ②无理数

  无限不循环小数叫做无理数。

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  开方开不尽的数,如√7,3√2等;

  有特定意义的数,如圆周率π,或化简后含有π的数,如π/?+8等;

  有特定结构的数,如0.…等;

  某些三角函数值,如sin60°等

  2、实数的倒数、相反数和绝对值

  ①相反数

  实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

  ②绝对值

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

  ③倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。

  ④数轴

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  ⑤估算

  3、平方根、算数平方根和立方根

  ①算术平方根

  一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

  性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

  ②平方根

  一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

  性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

  开平方求一个数a的平方根的运算,叫做开平方。注意√a的双重非负性:√a≥0;a≥0

  ③立方根

  一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(或三次方根)。

  表示方法:记作3√a

  性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

  注意:-3√a=3√-a,这说明三次根号内的负号可以移到根号外面。

  4、实数大小的比较

  ①实数比较大小

  正数大于零,负数小于零,正数大于一切负数;

  数轴上的两个点所表示的数,右边的总比左边的大;

  两个负数,绝对值大的反而小。

  ②实数大小比较的几种常用方法

  数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

  求差比较:设a、b是实数a-b>0a>b;a-b=0a=b;a-b<0a<b。

  求商比较法:设a、b是两正实数,

  绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a<b。

  平方法:设a、b是两负实数,则a2>b2a<b。

  5、算术平方根有关计算(二次根式)

  ①含有二次根号“√”;被开方数a必须是非负数。

  ②性质:

  ③运算结果若含有“√”形式,必须满足:

  被开方数的因数是整数,因式是整式

  被开方数中不含能开得尽方的因数或因式

  6、实数的运算

  ①六种运算:加、减、乘、除、乘方、开方。

  ②实数的运算顺序

  先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

  ③运算律

  加法交换律a+b=b+a

  加法结合律(a+b)+c=a+(b+c)

  乘法交换律ab=ba

  乘法结合律(ab)c=a(bc)

  乘法对加法的分配律a(b+c)=ab+ac

八年级数学期中总结

  一、面向全体学生因材施教

  在教学实践中,全面贯彻教育方针,面向全体学生,采用抓两头,促中间,实施分层教学,因材施教,因人施教,使全体学生都能学有所得。

  1、备课:精心钻研教材,细心备课;做到:重点难点突出,易混易错知识点清晰,并掌握好,中,差学生的认知能力,分层次设计练习题,分层次落实训练内容,使全体学生都能轻松学习,学有所获。

  2、授课:一是从问题出发进行教学。美国的心理学家布鲁纳曾说过“教学过程是提出问题解决问题持续不断的教学活动”,而问题又是数学的心脏,通过问题教学唤起学生的创造灵感,点燃创造思维的火花,激发学生学习的内动力,开启心智。从而使学生达到"三自",即自己发现问题,自己提出问题,自己解决问题,尤其鼓励学生自己提出问题;二是情感教学。深刻领会"亲其师,信其道,乐其学"的效应,与学生建立深厚的师生感情,正确对学生进行学法指导,使学生愿学,乐学,会学。

  3、创造成功体验的机会:一是从多个方面给学困生创设学习时间空间,采用课堂多提问,一帮一合作学习,作业分层照顾,指导学困生自己提出问题等措施;二是利用课后时间与其谈心,树立正确积极向上的人生观,同时经常在学困生的作业上,试卷上写上一些鼓励的语言,及时与家长交流学生学习的情况。

  4、利用年轻精力充沛优势,抓好晚辅。

  二、关心学习上有困难的学生

  对学习有困难的学生特别予以关心,反复采取措施,激发他们学习数学的兴趣,指导他们改进学习方法,帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,成为一名合格的初中生。

  在课堂教学中,特别在题目的选择上要有梯度,符合他们的认知水平,逐步使他们学习质量有所提高。

  最后,在班内开展学习中的互相帮助活动,创设一个良好的复习情境,同时,有计划、有针对性地做好课外辅导工作。

  三、注重学生解题中的错误分析

  学生在解题中出现错误是不可避免,教师针对错误进行系统分析是重要的,首先可以通过错误来发现教学中的不足,从而采取措施进行补救;错误从一个特定角度揭示了学生掌握知识的过程,是学生在学习中对所学知识不断尝试的结果,教师认真总结,可以成为学生知识宝库中的重要组成部分,使学生领略解决问题中的探索、调试过程,这对学生能力的培养会产生有益影响。

  首先,应预防错误的发生,要了解不同层次学生对知识的掌握情况,调查中发现:

  ⑴字面理解水平⑵联系的理解水平⑶创造性水平

  其次,在复习过程中,提问是重要复习手段,对于学生错误的回答,要分析其原因进行有针对性的讲解,这样可以利用反面知识巩固正面知识。

  最后,课后的讲评要抓住典型加以评述。事实证明,练是实践,评是升华,只讲不评,练习往往走过场。

  四、做好数学技能的再学习,全面培养学生素质。

  根据数学大纲的规定,一般认为数学技能指以下3种:⑴运算技能;⑵作图和画图技能;⑶推理技能

  为此,在数学复习中,特别在学生练习中要做到下面几个方面:

  第一,正确性。要求学生在解题过程中遵循正确思维规律和形式,在运算、推理、作图中和所得结论中都要准确无误。

  第二、速度。注重解题速度。

  第三、协调性。在解题过程中有意识地控制自己的反应,对于文字、符号、图形运用自由,融为一体,作出连贯反应。

  五、要把“发展学生思维能力是培养能力的信心”这思想贯穿整个复习的始终。

  1、变更命题的表现形式,培养学生思维的深刻性。

  2、寻求不同的解题途径与思维方式,培养学生的思维广阔性。

  3、变化几何图形的位置、形状和大小,培养学生思维的灵活性,敏捷性。

  4、强化题目的条件和结论,培养学生的思维批评性。

  5、变封闭题目为开放型题目,培养学生的思维创造性。

  六、存在的问题

  1、没有认真研究题型和学生的做题情况。

  2、没有最大限度地调动学生的学习积极性和主动性。

  3、对个别学困生没有很好的辅导。

  七、改进的具体措施

  1、强自身修养,努力提高业务水平,努力学习教育教学理论,特别是加强新理念的学习。

  2、定期做好学困生的思想工作,帮助他们解决各种困难。

  3、加强管理,督促学生完成学习任务。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- nryq.cn 版权所有 赣ICP备2024042798号-6

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务