Infraredglasses
JacquesLucas*
´´deRennes1,35042RennesCedex,France,CNRSUMR6512,CampusdeBeaulieu,UniversiteLaboratoiredesVerresetCeramiques
Abstract
Drivenbyapplicationsinhotfieldssuchasopticalcommunications,lasers,sensors,etc.infraredglasseshavetobeconsideredaskey
componentsinthedevelopmentofdevicesfortelecomsignalamplification,fibre-laseremissionaswellasforpassivefunctionsrelatedtoIRremotespectroscopyorthermalimaging.Stablevitreousmaterialswithlow-phononenergiesarefoundinthefamilyoffluoridesandchalcogenidesglasses;theyoffertheadvantageofexcellenttransparencyinthemid-IRandweaknonradiativerelaxationwhendopedwithrareearthelements.Despitethenumberofcandidatesonlyaverylimitednumberofglasscompositionscanbeshapedintogoodopticalwaveguidessuchaschannelorfibre.Whenpossible,thisledtoremarkableamplificationinthe1.3mmregionandlasingemissionintheblueormid-IR.Non-linearopticalpropertiesofchalcogen-basedglassesarealsoofspecialinterestforfastallopticalswitchingandphoto-inducedeffects.©1999ElsevierScienceLtd.Allrightsreserved.
1.Introduction
Theinsatiableneedforhighcapacitytelecommunicationsystemsresultsinapermanentreconsiderationofthepotentialofanallopticalnetwork.Inordertosatisfythedemandformorebandwidth,wavelengthdivisionandtemporalmultiplexingarenecessarytotakeadvantageofthetelecommunicationwindowofferedbysilicafibresandwhichextendsroughlyfrom1.2mmto1.6mm.Opticalamplificationinthisspectralregioniscriticalinordertoregeneratethetelecomsignalinusingmultiplexingandthemaximumpotentialofalltherareearth(RE)ionsemittinginthewindow.ThreemainobjectiveswhereIRglasses[1]canplayakeyrolecanbeidentified:(1)theobtainingofflatgainamplificationinagivenspectralrangeforexamplearoundthe1.5mmemissionofEr31.(2)TheuseofotherREelements[2]forcoveringtherestofthewindowtakingintoaccountthattheyaresometimestotallyinactiveinsilicaglassbuthaveagoodefficiencyinlowphononmatrices:Pr31emissionat1.3mmgives,inthatrespect,agoodillustrationofthesituation.(3)Theopportunitytotakeadvantageoftheexcellentnon-linearpropertiesofchalcogenideglassesforultrafastallopticalswitching.
Outoftheveryactivetelecomfield,thereisalsoademandfornewlasersourcesoperatingintheUV-blueaswellasinthemid-IRregionwhichisnotwellcoveredbythesemiconductorlasers.Fluoridefibrelasersofferonthis
*Tel.:133-2-9929-6260;fax:133-2-9928-1600.
E-mailaddress:jacques.lucas@univ-rennes1.fr(J.Lucas)
pointarealopportunitybecauseoftheirlargeopticalwindowandthepossibilityofup-conversionphenomena.Finally,passivefunctionsrelatedtothetransparencyoftheatmosphereinthe3–5and8–12mmregionsaswellastherichnessofthemid-IRsignaturesforalltheorganiccompoundshaveenhancedtheinterestofusingIRglassfibresforremotespectroscopyandopticsforthermalimagingsystems.
2.Glassesforopticalamplificationandfibrelaser
2.1.Opticalamplification
Itistraditionallyadmittedthatthetelecomopticalnetworkhadtooperateinthetwomosttransparentwindowsofthesilicafibreslocatedaround1.3and1.5mm;thefirstwavelengthisinterestingduetoitslocalisa-tioninthelowdispersionregionofthefibre,thesecondbecauseitcorrespondstothelowlossregion.TheveryrecentprogressintheSiO2fibrefabricationresultinginlowOHimpuritiesissuchthatacompletelytransparentwindowlyingfrom1.2to1.6mmcannowbeconsidered.TheneedforahighcapacitynetworkledalsotoincreasetheopticalamplificationefficiencyinthisspectraldomaininusingalltheREelementsemittinginthiswindowsuchasPr31,Nd31[3],Dy31[4]around1.35mm,Tm31at1.45and1.65mmandofcoursetheveryefficientEr31ionforthestrategic1.55mmregion.Flatgainamplificationisalsovitalinordertoincreasethetransmissioncapacityofwavelengthdivisionmultiplexing(WDM)systems[5,6].
1359-0286/99/$–seefrontmatter©1999ElsevierScienceLtd.Allrightsreserved.PII:S1359-0286(99)00007-8
J.Lucas/CurrentOpinioninSolidStateandMaterialsScience4(1999)181–187183
Fig.2.Transmissionspectraofseveralinfraredglassescomparedtosilica.ThetwoglassesZBLANandBIGaremulticomponentfluorideglassesbasedonZrF4andBaF2forthefirstoneandBaF2,InF3,GaF3forthesecond.Theglass2SGisaseleniumbasedmaterialcontainingtheelements:Se,Sb,GeandGa.TheTeXglassisbasedonthecombinationofTe,SeandI2whiletheTeXAsisasimilarglasswiththeadditionofAs.
HoyateaminmovingfromfluoridetochalcogenideglassesanddevelopingacompositionbasedonGa2S3–Na2ScalledGaNaSwhichcanbedopedwithlargeamountofREandespeciallyPr31.Anextrusionmethodhasbeenusedtomakethepreformforsingle-modepropagation,resultingafterdrawinginafibrehavinganumericalapertureNAof0.31andacorediameterof2.0–2.5mmforacladdiameterofabout120mm.
Recently,opticalamplificationhasbeendemonstratedatwavelengthsdifferentfromtheusualtelecomwindowsat1.3and1.55mm.Thusahighgainamplifierwithinthe1.4–1.5mmspectralrangewhichisstillinthelowlossregionwillpermittoextendthebandwidthfortelecom-munications.ATm31dopedZBLANfibreupconversionamplifier[17]withamaximumgainof28dBat1.47mmhasbeenrealisedandthegainisgreaterthan10dBbetween1.44and1.51mm.Opticalamplifiershavealsobeendevelopedinthe1.6–1.65mmrange.Forexampleat1.65mmasignalgainof35dBwasachieved[18]withaZBLANfibreconsistingofaTm31-dopedcoreandaTb31-dopedcladdingtosuppresstheamplifiedsponta-neousemissionat1.75–2.0mm.
Thetechnicalchallengesforbuildingafibrelaseraresimilartothoserequiredforanopticalamplifierexceptthattworeflectingmirrorshavetobeputattheextremitiesofthesinglemodefibreinordertoobtainoscillations.Themostsignificantresultshavebeenalreadydiscussedbytheauthorandthisreviewwillemphasiseonlytheveryrecentcontributions.Inthefieldoffluorideglassestworesultswhicharesituatedatthetwoextremitiesoftheemittingspectralrangeareofspecialinterest.Theemissionof230
mWblueupconvertedlight[19]fromaTm31-dopedfluoridefibreexcitedbyadiodepumpedNd:YAGlaserandthecharacterizationofaHo31-dopedfluoridefibrelaser[20]emittinginthemid-IRregionat3.9mm.
ThefirstlaseractioninanRE-dopedchalcogenideglassfibrewasreported[21].Laseroscillationsat1080nmwereobtainedinaGaLaSglassfibrewithaNd31-dopedcorefabricatedbytherod-in-tubemethod.Someotheremis-sionsofSm31at1.8,2.9and4.3mmobservedinGaLaSglassesarealsoofpotentialinterest[22].
3.PassivefunctionsofIRglassesandsomephoto-inducedeffects
Inthissection,IRglassesareconsideredaspassivematerials,attractivebecauseoftheirexceptionaltrans-parencyinsomestrategicspectraldomainssuchasthetwoatmosphericwindowsinthe3–5mmandespeciallythe8–12mmregioncorrespondingtotheroomtemperaturethermalimaging.AlsothisspectralregionisofspecialinterestbecauseitcontainstheIRfingerprintsoftheorganicmaterialswhichliefromabout3mmtothe12mmregion.Asamatteroffactsomepropertiesarenottotallypassiveinthesensethatwhenirradiatedbylaserillumina-tionsomeglassessuchasthechalcogenidesexhibitnon-linearpropertiesresultinginultra-fastvariationoftherefractiveindex.Sometimestheirradiationcausesanirreversiblesituationresultinginalocal,permanentvari-ationoftherefractiveindexallowingwaveguidephoto-writing.
184J.Lucas/CurrentOpinioninSolidStateandMaterialsScience4(1999)181–1873.1.Third-ordernon-linearity
Againdrivenbypotentialapplicationsintelecommuni-cations,chalcogenideglasseshavefoundanewnicheinallfastopticalswitchingasdemonstratedbyAsobe[*23].Indeedwhencomparedtosilicathechalcogenideglassesexhibitmuchhighernon-linearproperties,illustratedbyathird-ordernon-linear2susceptibilityX3oranon-linearrefractiveindexnabout100timesgreaterthanthatofSiO2glass[24–26].Forapplicationstoultra-fastopticalswitching,single-modepropagationisnecessaryandfibreshavingasmallercoreandhigherrelativerefractiveindexdifferenceareadvantageousinreducingtheswitchingpower.ThebestresultshavebeenobtainedinusingtherodintubemethodratherthanthedoublecrucibleapproachandthefollowingperformanceshavebeenreachedforanAs2S3-basedfibre:switchingpowerof0.4Wforacoresizeof2.5mm,afibrelengthof4mandalossof0.6dB/m[*23].
Themainadvantageofchalcogenideglassesisthatwhentheoperatingwavelengthisratherfarfromtheresonantregion,namelytheelectronicabsorptionedge,thenon-lineareffectispurelyelectronic.Consequentlyultra-fastmaterialresponseduetothirdorderelectronicpolari-sationisguaranteed.Indeediftheexcitationwavelengthislocatedintheresonantregionhighnon-linearityisex-pectedbutessentiallyduetoabsorptionleadingtothermaleffects.Thedrawbacktothistypeofnon-linearityisthattheresponsetimeisgovernedbythermalrelaxation,inotherwords,veryslow.Kanbara[27]andHirao[28]haveexaminedthethird-ordernon-linearopticalpropertiesofAs–S–Seglassesbythirdharmonicgeneration,opticalKerrshutteranddegeneratefourwavesmixingmeasure-ments.Theauthorsconcludethatthischalcogenideglasscompositionwasagoodcandidateforcompactopticalswitchingdevicesandthatultra-fastresponsetimeoflessthansub-picosecondwasattainable.
Itisnowverywellacceptedthattheoriginofthisexceptionalhighelectronicpolarisabilityisduetothepresenceofnon-bondingelectroniclonepairslocatedonthechalcogenatoms.Thissituationdoesnotexistinsilicaglassesbutthepricetopayforthisisthepresenceofanon-bondinglevelinthebondingenergydiagramofthischalcogenide-basedmaterial.Theimmediateconsequenceisasignificantdecreaseofthebandgapenergyduetotransitionsbetweenthisnon-bondinglevelandtheimmedi-ateupperanti-bondinglevel.Itiswellknownthatmostofthechalcogenideglasseshaveapoortransparencyinthevisibleregionbeingsometimestotallyblackandthattheexpansionoftheabsorptionedgeintothetelecommunica-tionwindowrepresentsanintrinsicfactorlimitingseverelytheirinterestforapplicationsinthefield.
Itisclearthatabetterunderstandingofglassformingtendencyaswellastheinfluenceofhalogenatomsonthebandgapedgewouldbeofprimeinterestfordesigningthe
glasshavingthelargestgapandthebestfibringability[16].
3.2.Photo-refractivityinchalcogenideglasses
Theresearchofphoto-inducedeffectsfordevicessuchasBragggratings,microlensedesign,andthreedimension-almemorieshaveattractedalotofinterestbothonthemechanismofthephenomenaandthepotentialapplica-tions.ThestateoftheartforchalcogenideglasseshasbeenrecentlyreviewedbyTanakawhopioneeredthefield[29].ItisinterestingtonoticethatthisirreversiblemodificationofthelocalglassstructureunderlaserirradiationcanbeobtainedeitherbyilluminationinthebandgapregionusingaHe–Nelaserorbyultrashortpulseirradiation[30].Thephotonenergyisusedtomodifylocallythebondingconfigurationresultinginaso-calledphoto-expan-sionoftheirradiatedvolumeleadingtoapermanentmodificationoftherefractiveindex[31,32,*33,34].Thispeculiarphenomenonwhichcorrespondstoakindofstructuralrelaxationraisedthequestionofthethermo-dynamicsofsuchmaterialwhichisoutofequilibriumforthesecondtime,firstduringthecoolingandthenafterthephotonicprocess.Thedependenceofthephenomenonontheglasscomposition[35]andtheshapeoftheglasssample[36]isalsoofinterest.
He–Neilluminationhasbeenusedformicrolensefabrication[37]andBragggratingsinscriptiononasinglemodeAs–Sfibreinusingthetranverseholographicmethod[38].Thechangeintherefractiveindexwasestimatedtobeoftheorderof1024.Thisfibregratingfabricationwasprovedtobesuccessfulfordispersioncompensationintheallopticalswitchingsystemdiscussedbefore.Miura[30]intheframeoftheHiraoglassprojectalsodemonstratedthatpermanentwaveguidescanbeformedinbulkchalcogenideglassesbyphoto-inducedrefractiveindexchangewithanultra-shortpulselaser.ThelasershotswereproducedusingaTisapphirelaseroperatinginthefollowingconditions;wavelength800nm,speed120fs,repetitionrate200kHz.
3.3.IRglassfibresforpassiveapplications
Duringtheintensivesearchperiodinthe1980saimedatdevelopingultra-lowlossfibres,chalcogenideglasseswereconsideredaspotentialcandidatesbecauseofthebroadseparationbetweenthebandgapandthemultiphononedgesleadingtotheoreticaldeepV-shapecurve.Indeed,duetotheexistenceofaso-calledweakabsorptiontailresultinginasignificantspreadingoftheUrbachtailintothenearIRregionithasbeenobservedthattheexperimen-talopticallossinthemid-IRregionwasmoreinthedB/mrangethanintheexpecteddB/kmestimation.Neverthelessdespitetheirmodestopticalloss,IRglassfibresbasedonchalcogencanbeusedforshortdistanceapplications
186J.Lucas/CurrentOpinioninSolidStateandMaterialsScience4(1999)181–187ofpracticaldevices.IRglassfibresarealsopromiseda
richfutureforthermalimagingsystemsaswellasforremoteevanescentwavespectroscopyanditsapplicationsinmedicalandindustrialfields.
References
Papersofparticularinterest,publishedwithintheannualperiodofreview,havebeenhighlightedas:*ofspecialinterest;
**ofoutstandinginterest
[1]LucasJ.Fluorideglasses.CurrOpinSolidStateMaterSci
1997;2:405–11.
[2]AdamJL,LucasJ,JiangS.Recentdevelopmentsinrare-earthdoped
glasses.ProceedingsoftheSocietyofPhoto-InstrumentationEngineers1997;2996:8–19.
[3]MoriA,OhishiY,KanomoriT,SudoS.Opticalamplificationwith
neodymium-dopedchalcogenideglassfiber.ApplPhysLett1997;10:1230–2.
[4]AdamJL,GuimondY,JurdycAM,GriscomL,MugnierJ,Jacquier
B.OpticalpropertiesofstabilizedDy31-dopedsulfideglassesfor1.3mmamplification.SPIE1998;3280:31–8.
[5]YamadaM,OnoH,KanamoriT,SudoS,OhishiY.Broadbandand
gain-flattenedamplifiercomposedofa1.55mmbandanda1.58mmbandEr31-dopedfibreamplifierinaparallelconfiguration.ElectronLett1997;33(8):349–51.
[6]YamadaM,OhishiY,KanamoriT,OnoH,SudoS,ShimizuM.
Low-noiseandgain-flattenedfluoride-basedEr31-dopedfibream-plifierpumpedby0.97mmlaserdiode.ElectronLett1997;33(9):710–1.
[7]NishidaY,KanamoriT,SakamotoT,OhishiY,SudoS.Develop-mentofPbF2–GaF3–InF3–ZnF2–YF3–LaF3glassforuseasa1.3mmPr31-dopedfiberamplifierhost.JNon-CrystSolids1997;221(2–3):238–44.
[8]KanamoriT,NishidaY,MoriA,KobayashiK,YamadaM,Shimada
T,ShimizuM,OhishiY.Non-silicaglassfiberamplifiers.Proceed-ingsoftheInternationalSymposiumOnNon-OxideGlasses1998,Sheffield(UK).Tobepublishedin1999inJNon-CrystSolids.[9]KanamoriT,TerunumaY,NishidaY,HoshinoK,NakagawaK,
OhishiY,SudoS.Fabricationoffluoridesingle-modefibersforopticalamplifiers.JNon-CrystSolids1997;213–214:121–5.
[10]NishidaY,KanamoriT,OhishiY,KobayashiK,SudoS.Efficient
PDFAmoduleusinghigh-NAPbF2/InF3basedfluorideglasses.IEEEPhotonTechnolLett1997;9(3):318–20.
[11]ShimadaT,HishidaY,KobayashiK,KanamoriT,OikawaK,
YamadaM,OhishiY.GainefficiencyofPbF2/InF3basedpraesodymiumdopedfluorideopticalfibresfor1.3mmopticalfibreamplifiers.ElectronLett1997;33(23):1972.
[*12]ItohK,YanagitaH,TawarayamaH,YamanakaK,IshikawaE,
OkadeK,AokiH,MatsumotoY,ShinakawaA,MatsuokaY,TorataniH.Pr31-dopedInF3/GaF3basedfluorideglassfibersandGa–Na–Sglassfibersforlightamplificationaround1.3mm.In:ProceedingsoftheInternationalSymposium.OnNon-OxideGlasses1998,Sheffield(UK).Tobepublishedin1999inJNon-CrystSolids.Thefirstchalcogenidesbasedopticalamplifier.
[13]AbeK,TakebeH,MorinagaK.Preparationandpropertiesof
Ge–Ga–Sglassesforlaserhosts.JNon-CrystSolids1997;212(2–3):143–50.
[14]HeweckDW,MooreRC,SchneitzerT,WangJ,SamsonB,
BrocklesbyWS,PayneDN.Galliumlanthanumsulfidefibreforactiveandpassiveapplications.ElectronLett1996;32(4):384–5.[15]YeCC,HewakDW,HempsteadM,SamsonBN,PayneDN.
SpectralpropertiesofEr31-dopedgalliumlanthanumsulphideglass.JNon-CrystSolids1996;208(1–2):56–63.
[16]
WangJ,HectorRJ,BradyD,HewakDW,BrocklesbyB,KluthM,MooreRC,PayneDN.HalidemodifiedGa–LasulfideglasseswithimprovedfiberdrawingandopticalpropertiesforPr31-dopedfiberamplifierat1.3mm.ApplPhysLett1997;71(13):1753–5.
[17]
KomukaiT,YamamotoT,SugawaT,MiyajimaY.Up-conversionpumpedthuliumdopedfluoridefiberamplifierandlaseroperatingat1.47mm.IEEEJQuantumElectron1995;31(11):1880–9.
[18]
SakamotoT,ShimizuH,YamadaM,KanamoriT,OhishiY,TerunumaY,SudoS.35dBgainTm-dopedZBLYANfiberamplifieroperatingat1.65mm.IEEEPhotonTechnolLett1996;8(3):349–51.
[19]
PaschottaR,MooreN,AndrewClarksonW,TropperAC,HannaDC,MaziG.230mwofbluelightfromathulium-dopedup-conversionfiberlaser.IEEE,JSelectTopQuantumElectron1997;3(4):1100–2.
[20]
SchneiderJ,CarbonnierC,UnrauUB.CharacterizationofaHo31-dopedfluoridefiberlaserwitha3.9mmemissionwavelength.ApplOptics1997;36(33):8595–600.
[21]
SchweitzerT,SamsonBN,MooreRC,HewakDW,PayneDN.Rare-earthdopedchalcogenideglassfibrelaser.ElectronLett1997;33(5):414–6.
[22]
SchweitzerT,HewakDW,SamsonBN,PayneDN.Spectroscopicdataofthe1.8,2.9and4.3mmtransitionsindysprosium-dopedgalliumlanthanumsulfideglass.OpticsLett1996;21(19):1594–6.
[**23]
Asobe
´M.Non-linearopticalpropertiesofchalcogenideglassfiberandtheirapplicationstoall-opticalswitching.OpticalFiberTechnol1997;3:142–8,Thestateoftheartinthefieldofchalcogenidesglassesfortelecomapplications.
[24]
NasuH,IbaraY,KuboderaK.Opticalthird-harmonicgenerationfromsomehigh-indexglasses.JNon-CrystSolids1989;110:229–34.
[25]
Asobe
´M,OharaT,YokohamaI,KainoT.Lowpowerall-opticalswitchinginanon-linearopticalloopminorusingchalcogenideglassfibers.ElectronLett1996;32:1396.
[26]
SmektalaF,Quemard´C,LeNeindreL,LucasJ,Barthelemy´´A,De
AngelisC.Chalcogenideglasseswithlargenon-linearrefractiveindices.JNon-CrystSolids1998;239:139–42.
[27]
KanbaraH,FujiwaraS,TanakaK,NasuH,KiraoK.Third-ordernon-linearopticalpropertiesofchalcogenideglasses.ApplPhysLett1997;70(8):925–7.
[28]
HiraoK,KanbaraH,FujiwaraS,TanakaK,SugimotoN.Third-ordernon-linearopticalpropertiesandultrafastopticalswitchingofchalcogenideglasses.JCeramSocJapan1997;105(12):1115–9.[29]TanakaK.Photoinducedprocessesinchalcogenideglasses.CurrOpinSolidStateMaterSci1996;1(4):567–71.
[30]
MiuraK,QiuJ,InouyeH,MitsuyuT,HiraoK.Photowrittenopticalwaveguidesinvariousglasseswithultrashortpulselaser.ApplPhysLett1998;71(23):3329–31.
[31]TanakaK,IshidaK.Photoinducedanisotropicstructureinchal-cogenideglass.JNon-CrystSolids1998;230:673–6.
[32]TanakaK.Photo-expansioninAS2S3glass.PhysRev1998;B57(9):5163–7.
[*33]
TanakaK,IshidaK,YoshidaN.Mechanismofphotoinducedanisotropyinchalcogenideglasses.PhysRev1996;B54(13):9190–5,Interestinganalysisoftheeffectofilluminationonstructuralreorganization.
[34]TanakaK.Lightinducedanisotropyinamorphouschalcogenides.Science1997;277(5333):1786–7.
[35]
ZhouZH,NasuH,HashimotoT,KamiyaK.Non-linearopticalpropertiesandstructureofNa2S–GeS2glasses.JNon-CrystSolids1997;215(1):61–7.
[36]
Cerqua-RichardsonKA,McKinleyJM,LawrenceB,JoshiS,VilleneuveA.Comparisonofnon-linearopticalpropertiesofsulfideglassesinbulkandthinfilmform.OptMater1998;10(2):155–9.
[37]
Berdie
´G,RabinovichWS,SangheraJ,AggarwalIS.FabricationofJ.Lucas/CurrentOpinioninSolidStateandMaterialsScience4(1999)181–187187
microlensesinbulkchalcogenideglass.OptCommun1998;152(4–6):215–20.
[38]
Asobe
´M,OharaT,YokohamaI,KainoT.FabricationofBragggratinginchalcogenideglassfiberusingthetransversehalographicmethod.ElectronLett1996;32:1611.
[39]SutoH.Chalcogenidefiberbundlefor3Dspectroscopy.InfraredPhysTechnol1997;38(4):93–9.
[40]SangheraJS,AggarwalIS.DevelopmentofchalcogenideglassfiberopticsatNRL.JNon-CrystSolids1997;213–214:63–7.
[41]
MossadeghR,SangheraJS,SchaafsmaD,ColeBJ,NyngenVQ,MiklosRE,AggarwalIS.Fabricationofsinglemodechalcogenideopticalfiber.JLightwaveTechnol1998;16(2):214–7.
[42]
LeNeindreL,LeFoulgocK,ZhangXH,LucasJ,GilbertF,LescoatO,ArdouinF,MorillonP.IRglassopticalfibersforCO2laserwelding.ProcSPIE,ProgBiomedOptics1997;2977:2–13.
[43]
Hocde
´S,LeNeindreL,LeFoulgocK,BoussardC,LeRouxP,ZhangXH,LucasJ.RecentimprovementsinthedevelopmentofIRTeXglassfibers.ProceedingsoftheSocietyofPhoto-Instrumen-tationEngineers1998;3262:144–9.
[44]
LeFoulgocK,LeNeindreL,Hocde
´S,SmektalaF,ZhangXH,LucasJ.Preparation,optimizationandinfraredapplicationsofTeX
glassopticalfibers.ProceedingsoftheSocietyofPhoto-Instru-mentationEngineers,InternationalSymposiumonLasersandMa-terialsinIndustry,1998(Quebec).´Tobepublishedin1999.
[45]
LucasJ,ZhangXH,LeFoulgocK,FonteneauG,FogretE.Non-oxydeglassesforopticalwaveguidesapplications.JNon-CrystSolids1996;203:127–34.
[46]
LeFoulgocK,LeNeindreL,ZhangXH,LucasJ.TaperedTeXglassopticalfibersforremoteIRspectroscopicanalysis.ProcSPIE1996;2836:26–36.
[47]
InagawaI,MorimotoS,YamashitaT,ShirotaniI.Temperaturedependenceoftransmissionlossofchalcogenideglassfibers.JApplPhysJpn1997;36(4A):2229–35.
[48]
FengXW,BresserWJ,ZhangM,GoodmanB,BoolchandP.Roleofthenetworkconnectivityontheelastic,plasticandthermalbehaviourofcovalentglasses.JNon-CrystSolids1997;222:137–43.
[49]
MitkovaM,BoolchandP.Microscopicoriginoftheglassformingtendencyinchalcohalidesandconstrainttheory.JNon-CrystSolids1998;240:1–21.
因篇幅问题不能全部显示,请点此查看更多更全内容