搜索
您的当前位置:首页正文

红外玻璃

来源:榕意旅游网
CurrentOpinioninSolidStateandMaterialsScience4(1999)181–187

Infraredglasses

JacquesLucas*

´´deRennes1,35042RennesCedex,France,CNRSUMR6512,CampusdeBeaulieu,UniversiteLaboratoiredesVerresetCeramiques

Abstract

Drivenbyapplicationsinhotfieldssuchasopticalcommunications,lasers,sensors,etc.infraredglasseshavetobeconsideredaskey

componentsinthedevelopmentofdevicesfortelecomsignalamplification,fibre-laseremissionaswellasforpassivefunctionsrelatedtoIRremotespectroscopyorthermalimaging.Stablevitreousmaterialswithlow-phononenergiesarefoundinthefamilyoffluoridesandchalcogenidesglasses;theyoffertheadvantageofexcellenttransparencyinthemid-IRandweaknonradiativerelaxationwhendopedwithrareearthelements.Despitethenumberofcandidatesonlyaverylimitednumberofglasscompositionscanbeshapedintogoodopticalwaveguidessuchaschannelorfibre.Whenpossible,thisledtoremarkableamplificationinthe1.3mmregionandlasingemissionintheblueormid-IR.Non-linearopticalpropertiesofchalcogen-basedglassesarealsoofspecialinterestforfastallopticalswitchingandphoto-inducedeffects.©1999ElsevierScienceLtd.Allrightsreserved.

1.Introduction

Theinsatiableneedforhighcapacitytelecommunicationsystemsresultsinapermanentreconsiderationofthepotentialofanallopticalnetwork.Inordertosatisfythedemandformorebandwidth,wavelengthdivisionandtemporalmultiplexingarenecessarytotakeadvantageofthetelecommunicationwindowofferedbysilicafibresandwhichextendsroughlyfrom1.2mmto1.6mm.Opticalamplificationinthisspectralregioniscriticalinordertoregeneratethetelecomsignalinusingmultiplexingandthemaximumpotentialofalltherareearth(RE)ionsemittinginthewindow.ThreemainobjectiveswhereIRglasses[1]canplayakeyrolecanbeidentified:(1)theobtainingofflatgainamplificationinagivenspectralrangeforexamplearoundthe1.5mmemissionofEr31.(2)TheuseofotherREelements[2]forcoveringtherestofthewindowtakingintoaccountthattheyaresometimestotallyinactiveinsilicaglassbuthaveagoodefficiencyinlowphononmatrices:Pr31emissionat1.3mmgives,inthatrespect,agoodillustrationofthesituation.(3)Theopportunitytotakeadvantageoftheexcellentnon-linearpropertiesofchalcogenideglassesforultrafastallopticalswitching.

Outoftheveryactivetelecomfield,thereisalsoademandfornewlasersourcesoperatingintheUV-blueaswellasinthemid-IRregionwhichisnotwellcoveredbythesemiconductorlasers.Fluoridefibrelasersofferonthis

*Tel.:133-2-9929-6260;fax:133-2-9928-1600.

E-mailaddress:jacques.lucas@univ-rennes1.fr(J.Lucas)

pointarealopportunitybecauseoftheirlargeopticalwindowandthepossibilityofup-conversionphenomena.Finally,passivefunctionsrelatedtothetransparencyoftheatmosphereinthe3–5and8–12mmregionsaswellastherichnessofthemid-IRsignaturesforalltheorganiccompoundshaveenhancedtheinterestofusingIRglassfibresforremotespectroscopyandopticsforthermalimagingsystems.

2.Glassesforopticalamplificationandfibrelaser

2.1.Opticalamplification

Itistraditionallyadmittedthatthetelecomopticalnetworkhadtooperateinthetwomosttransparentwindowsofthesilicafibreslocatedaround1.3and1.5mm;thefirstwavelengthisinterestingduetoitslocalisa-tioninthelowdispersionregionofthefibre,thesecondbecauseitcorrespondstothelowlossregion.TheveryrecentprogressintheSiO2fibrefabricationresultinginlowOHimpuritiesissuchthatacompletelytransparentwindowlyingfrom1.2to1.6mmcannowbeconsidered.TheneedforahighcapacitynetworkledalsotoincreasetheopticalamplificationefficiencyinthisspectraldomaininusingalltheREelementsemittinginthiswindowsuchasPr31,Nd31[3],Dy31[4]around1.35mm,Tm31at1.45and1.65mmandofcoursetheveryefficientEr31ionforthestrategic1.55mmregion.Flatgainamplificationisalsovitalinordertoincreasethetransmissioncapacityofwavelengthdivisionmultiplexing(WDM)systems[5,6].

1359-0286/99/$–seefrontmatter©1999ElsevierScienceLtd.Allrightsreserved.PII:S1359-0286(99)00007-8

J.Lucas/CurrentOpinioninSolidStateandMaterialsScience4(1999)181–187183

Fig.2.Transmissionspectraofseveralinfraredglassescomparedtosilica.ThetwoglassesZBLANandBIGaremulticomponentfluorideglassesbasedonZrF4andBaF2forthefirstoneandBaF2,InF3,GaF3forthesecond.Theglass2SGisaseleniumbasedmaterialcontainingtheelements:Se,Sb,GeandGa.TheTeXglassisbasedonthecombinationofTe,SeandI2whiletheTeXAsisasimilarglasswiththeadditionofAs.

HoyateaminmovingfromfluoridetochalcogenideglassesanddevelopingacompositionbasedonGa2S3–Na2ScalledGaNaSwhichcanbedopedwithlargeamountofREandespeciallyPr31.Anextrusionmethodhasbeenusedtomakethepreformforsingle-modepropagation,resultingafterdrawinginafibrehavinganumericalapertureNAof0.31andacorediameterof2.0–2.5mmforacladdiameterofabout120mm.

Recently,opticalamplificationhasbeendemonstratedatwavelengthsdifferentfromtheusualtelecomwindowsat1.3and1.55mm.Thusahighgainamplifierwithinthe1.4–1.5mmspectralrangewhichisstillinthelowlossregionwillpermittoextendthebandwidthfortelecom-munications.ATm31dopedZBLANfibreupconversionamplifier[17]withamaximumgainof28dBat1.47mmhasbeenrealisedandthegainisgreaterthan10dBbetween1.44and1.51mm.Opticalamplifiershavealsobeendevelopedinthe1.6–1.65mmrange.Forexampleat1.65mmasignalgainof35dBwasachieved[18]withaZBLANfibreconsistingofaTm31-dopedcoreandaTb31-dopedcladdingtosuppresstheamplifiedsponta-neousemissionat1.75–2.0mm.

Thetechnicalchallengesforbuildingafibrelaseraresimilartothoserequiredforanopticalamplifierexceptthattworeflectingmirrorshavetobeputattheextremitiesofthesinglemodefibreinordertoobtainoscillations.Themostsignificantresultshavebeenalreadydiscussedbytheauthorandthisreviewwillemphasiseonlytheveryrecentcontributions.Inthefieldoffluorideglassestworesultswhicharesituatedatthetwoextremitiesoftheemittingspectralrangeareofspecialinterest.Theemissionof230

mWblueupconvertedlight[19]fromaTm31-dopedfluoridefibreexcitedbyadiodepumpedNd:YAGlaserandthecharacterizationofaHo31-dopedfluoridefibrelaser[20]emittinginthemid-IRregionat3.9mm.

ThefirstlaseractioninanRE-dopedchalcogenideglassfibrewasreported[21].Laseroscillationsat1080nmwereobtainedinaGaLaSglassfibrewithaNd31-dopedcorefabricatedbytherod-in-tubemethod.Someotheremis-sionsofSm31at1.8,2.9and4.3mmobservedinGaLaSglassesarealsoofpotentialinterest[22].

3.PassivefunctionsofIRglassesandsomephoto-inducedeffects

Inthissection,IRglassesareconsideredaspassivematerials,attractivebecauseoftheirexceptionaltrans-parencyinsomestrategicspectraldomainssuchasthetwoatmosphericwindowsinthe3–5mmandespeciallythe8–12mmregioncorrespondingtotheroomtemperaturethermalimaging.AlsothisspectralregionisofspecialinterestbecauseitcontainstheIRfingerprintsoftheorganicmaterialswhichliefromabout3mmtothe12mmregion.Asamatteroffactsomepropertiesarenottotallypassiveinthesensethatwhenirradiatedbylaserillumina-tionsomeglassessuchasthechalcogenidesexhibitnon-linearpropertiesresultinginultra-fastvariationoftherefractiveindex.Sometimestheirradiationcausesanirreversiblesituationresultinginalocal,permanentvari-ationoftherefractiveindexallowingwaveguidephoto-writing.

184J.Lucas/CurrentOpinioninSolidStateandMaterialsScience4(1999)181–1873.1.Third-ordernon-linearity

Againdrivenbypotentialapplicationsintelecommuni-cations,chalcogenideglasseshavefoundanewnicheinallfastopticalswitchingasdemonstratedbyAsobe[*23].Indeedwhencomparedtosilicathechalcogenideglassesexhibitmuchhighernon-linearproperties,illustratedbyathird-ordernon-linear2susceptibilityX3oranon-linearrefractiveindexnabout100timesgreaterthanthatofSiO2glass[24–26].Forapplicationstoultra-fastopticalswitching,single-modepropagationisnecessaryandfibreshavingasmallercoreandhigherrelativerefractiveindexdifferenceareadvantageousinreducingtheswitchingpower.ThebestresultshavebeenobtainedinusingtherodintubemethodratherthanthedoublecrucibleapproachandthefollowingperformanceshavebeenreachedforanAs2S3-basedfibre:switchingpowerof0.4Wforacoresizeof2.5mm,afibrelengthof4mandalossof0.6dB/m[*23].

Themainadvantageofchalcogenideglassesisthatwhentheoperatingwavelengthisratherfarfromtheresonantregion,namelytheelectronicabsorptionedge,thenon-lineareffectispurelyelectronic.Consequentlyultra-fastmaterialresponseduetothirdorderelectronicpolari-sationisguaranteed.Indeediftheexcitationwavelengthislocatedintheresonantregionhighnon-linearityisex-pectedbutessentiallyduetoabsorptionleadingtothermaleffects.Thedrawbacktothistypeofnon-linearityisthattheresponsetimeisgovernedbythermalrelaxation,inotherwords,veryslow.Kanbara[27]andHirao[28]haveexaminedthethird-ordernon-linearopticalpropertiesofAs–S–Seglassesbythirdharmonicgeneration,opticalKerrshutteranddegeneratefourwavesmixingmeasure-ments.Theauthorsconcludethatthischalcogenideglasscompositionwasagoodcandidateforcompactopticalswitchingdevicesandthatultra-fastresponsetimeoflessthansub-picosecondwasattainable.

Itisnowverywellacceptedthattheoriginofthisexceptionalhighelectronicpolarisabilityisduetothepresenceofnon-bondingelectroniclonepairslocatedonthechalcogenatoms.Thissituationdoesnotexistinsilicaglassesbutthepricetopayforthisisthepresenceofanon-bondinglevelinthebondingenergydiagramofthischalcogenide-basedmaterial.Theimmediateconsequenceisasignificantdecreaseofthebandgapenergyduetotransitionsbetweenthisnon-bondinglevelandtheimmedi-ateupperanti-bondinglevel.Itiswellknownthatmostofthechalcogenideglasseshaveapoortransparencyinthevisibleregionbeingsometimestotallyblackandthattheexpansionoftheabsorptionedgeintothetelecommunica-tionwindowrepresentsanintrinsicfactorlimitingseverelytheirinterestforapplicationsinthefield.

Itisclearthatabetterunderstandingofglassformingtendencyaswellastheinfluenceofhalogenatomsonthebandgapedgewouldbeofprimeinterestfordesigningthe

glasshavingthelargestgapandthebestfibringability[16].

3.2.Photo-refractivityinchalcogenideglasses

Theresearchofphoto-inducedeffectsfordevicessuchasBragggratings,microlensedesign,andthreedimension-almemorieshaveattractedalotofinterestbothonthemechanismofthephenomenaandthepotentialapplica-tions.ThestateoftheartforchalcogenideglasseshasbeenrecentlyreviewedbyTanakawhopioneeredthefield[29].ItisinterestingtonoticethatthisirreversiblemodificationofthelocalglassstructureunderlaserirradiationcanbeobtainedeitherbyilluminationinthebandgapregionusingaHe–Nelaserorbyultrashortpulseirradiation[30].Thephotonenergyisusedtomodifylocallythebondingconfigurationresultinginaso-calledphoto-expan-sionoftheirradiatedvolumeleadingtoapermanentmodificationoftherefractiveindex[31,32,*33,34].Thispeculiarphenomenonwhichcorrespondstoakindofstructuralrelaxationraisedthequestionofthethermo-dynamicsofsuchmaterialwhichisoutofequilibriumforthesecondtime,firstduringthecoolingandthenafterthephotonicprocess.Thedependenceofthephenomenonontheglasscomposition[35]andtheshapeoftheglasssample[36]isalsoofinterest.

He–Neilluminationhasbeenusedformicrolensefabrication[37]andBragggratingsinscriptiononasinglemodeAs–Sfibreinusingthetranverseholographicmethod[38].Thechangeintherefractiveindexwasestimatedtobeoftheorderof1024.Thisfibregratingfabricationwasprovedtobesuccessfulfordispersioncompensationintheallopticalswitchingsystemdiscussedbefore.Miura[30]intheframeoftheHiraoglassprojectalsodemonstratedthatpermanentwaveguidescanbeformedinbulkchalcogenideglassesbyphoto-inducedrefractiveindexchangewithanultra-shortpulselaser.ThelasershotswereproducedusingaTisapphirelaseroperatinginthefollowingconditions;wavelength800nm,speed120fs,repetitionrate200kHz.

3.3.IRglassfibresforpassiveapplications

Duringtheintensivesearchperiodinthe1980saimedatdevelopingultra-lowlossfibres,chalcogenideglasseswereconsideredaspotentialcandidatesbecauseofthebroadseparationbetweenthebandgapandthemultiphononedgesleadingtotheoreticaldeepV-shapecurve.Indeed,duetotheexistenceofaso-calledweakabsorptiontailresultinginasignificantspreadingoftheUrbachtailintothenearIRregionithasbeenobservedthattheexperimen-talopticallossinthemid-IRregionwasmoreinthedB/mrangethanintheexpecteddB/kmestimation.Neverthelessdespitetheirmodestopticalloss,IRglassfibresbasedonchalcogencanbeusedforshortdistanceapplications

186J.Lucas/CurrentOpinioninSolidStateandMaterialsScience4(1999)181–187ofpracticaldevices.IRglassfibresarealsopromiseda

richfutureforthermalimagingsystemsaswellasforremoteevanescentwavespectroscopyanditsapplicationsinmedicalandindustrialfields.

References

Papersofparticularinterest,publishedwithintheannualperiodofreview,havebeenhighlightedas:*ofspecialinterest;

**ofoutstandinginterest

[1]LucasJ.Fluorideglasses.CurrOpinSolidStateMaterSci

1997;2:405–11.

[2]AdamJL,LucasJ,JiangS.Recentdevelopmentsinrare-earthdoped

glasses.ProceedingsoftheSocietyofPhoto-InstrumentationEngineers1997;2996:8–19.

[3]MoriA,OhishiY,KanomoriT,SudoS.Opticalamplificationwith

neodymium-dopedchalcogenideglassfiber.ApplPhysLett1997;10:1230–2.

[4]AdamJL,GuimondY,JurdycAM,GriscomL,MugnierJ,Jacquier

B.OpticalpropertiesofstabilizedDy31-dopedsulfideglassesfor1.3mmamplification.SPIE1998;3280:31–8.

[5]YamadaM,OnoH,KanamoriT,SudoS,OhishiY.Broadbandand

gain-flattenedamplifiercomposedofa1.55mmbandanda1.58mmbandEr31-dopedfibreamplifierinaparallelconfiguration.ElectronLett1997;33(8):349–51.

[6]YamadaM,OhishiY,KanamoriT,OnoH,SudoS,ShimizuM.

Low-noiseandgain-flattenedfluoride-basedEr31-dopedfibream-plifierpumpedby0.97mmlaserdiode.ElectronLett1997;33(9):710–1.

[7]NishidaY,KanamoriT,SakamotoT,OhishiY,SudoS.Develop-mentofPbF2–GaF3–InF3–ZnF2–YF3–LaF3glassforuseasa1.3mmPr31-dopedfiberamplifierhost.JNon-CrystSolids1997;221(2–3):238–44.

[8]KanamoriT,NishidaY,MoriA,KobayashiK,YamadaM,Shimada

T,ShimizuM,OhishiY.Non-silicaglassfiberamplifiers.Proceed-ingsoftheInternationalSymposiumOnNon-OxideGlasses1998,Sheffield(UK).Tobepublishedin1999inJNon-CrystSolids.[9]KanamoriT,TerunumaY,NishidaY,HoshinoK,NakagawaK,

OhishiY,SudoS.Fabricationoffluoridesingle-modefibersforopticalamplifiers.JNon-CrystSolids1997;213–214:121–5.

[10]NishidaY,KanamoriT,OhishiY,KobayashiK,SudoS.Efficient

PDFAmoduleusinghigh-NAPbF2/InF3basedfluorideglasses.IEEEPhotonTechnolLett1997;9(3):318–20.

[11]ShimadaT,HishidaY,KobayashiK,KanamoriT,OikawaK,

YamadaM,OhishiY.GainefficiencyofPbF2/InF3basedpraesodymiumdopedfluorideopticalfibresfor1.3mmopticalfibreamplifiers.ElectronLett1997;33(23):1972.

[*12]ItohK,YanagitaH,TawarayamaH,YamanakaK,IshikawaE,

OkadeK,AokiH,MatsumotoY,ShinakawaA,MatsuokaY,TorataniH.Pr31-dopedInF3/GaF3basedfluorideglassfibersandGa–Na–Sglassfibersforlightamplificationaround1.3mm.In:ProceedingsoftheInternationalSymposium.OnNon-OxideGlasses1998,Sheffield(UK).Tobepublishedin1999inJNon-CrystSolids.Thefirstchalcogenidesbasedopticalamplifier.

[13]AbeK,TakebeH,MorinagaK.Preparationandpropertiesof

Ge–Ga–Sglassesforlaserhosts.JNon-CrystSolids1997;212(2–3):143–50.

[14]HeweckDW,MooreRC,SchneitzerT,WangJ,SamsonB,

BrocklesbyWS,PayneDN.Galliumlanthanumsulfidefibreforactiveandpassiveapplications.ElectronLett1996;32(4):384–5.[15]YeCC,HewakDW,HempsteadM,SamsonBN,PayneDN.

SpectralpropertiesofEr31-dopedgalliumlanthanumsulphideglass.JNon-CrystSolids1996;208(1–2):56–63.

[16]

WangJ,HectorRJ,BradyD,HewakDW,BrocklesbyB,KluthM,MooreRC,PayneDN.HalidemodifiedGa–LasulfideglasseswithimprovedfiberdrawingandopticalpropertiesforPr31-dopedfiberamplifierat1.3mm.ApplPhysLett1997;71(13):1753–5.

[17]

KomukaiT,YamamotoT,SugawaT,MiyajimaY.Up-conversionpumpedthuliumdopedfluoridefiberamplifierandlaseroperatingat1.47mm.IEEEJQuantumElectron1995;31(11):1880–9.

[18]

SakamotoT,ShimizuH,YamadaM,KanamoriT,OhishiY,TerunumaY,SudoS.35dBgainTm-dopedZBLYANfiberamplifieroperatingat1.65mm.IEEEPhotonTechnolLett1996;8(3):349–51.

[19]

PaschottaR,MooreN,AndrewClarksonW,TropperAC,HannaDC,MaziG.230mwofbluelightfromathulium-dopedup-conversionfiberlaser.IEEE,JSelectTopQuantumElectron1997;3(4):1100–2.

[20]

SchneiderJ,CarbonnierC,UnrauUB.CharacterizationofaHo31-dopedfluoridefiberlaserwitha3.9mmemissionwavelength.ApplOptics1997;36(33):8595–600.

[21]

SchweitzerT,SamsonBN,MooreRC,HewakDW,PayneDN.Rare-earthdopedchalcogenideglassfibrelaser.ElectronLett1997;33(5):414–6.

[22]

SchweitzerT,HewakDW,SamsonBN,PayneDN.Spectroscopicdataofthe1.8,2.9and4.3mmtransitionsindysprosium-dopedgalliumlanthanumsulfideglass.OpticsLett1996;21(19):1594–6.

[**23]

Asobe

´M.Non-linearopticalpropertiesofchalcogenideglassfiberandtheirapplicationstoall-opticalswitching.OpticalFiberTechnol1997;3:142–8,Thestateoftheartinthefieldofchalcogenidesglassesfortelecomapplications.

[24]

NasuH,IbaraY,KuboderaK.Opticalthird-harmonicgenerationfromsomehigh-indexglasses.JNon-CrystSolids1989;110:229–34.

[25]

Asobe

´M,OharaT,YokohamaI,KainoT.Lowpowerall-opticalswitchinginanon-linearopticalloopminorusingchalcogenideglassfibers.ElectronLett1996;32:1396.

[26]

SmektalaF,Quemard´C,LeNeindreL,LucasJ,Barthelemy´´A,De

AngelisC.Chalcogenideglasseswithlargenon-linearrefractiveindices.JNon-CrystSolids1998;239:139–42.

[27]

KanbaraH,FujiwaraS,TanakaK,NasuH,KiraoK.Third-ordernon-linearopticalpropertiesofchalcogenideglasses.ApplPhysLett1997;70(8):925–7.

[28]

HiraoK,KanbaraH,FujiwaraS,TanakaK,SugimotoN.Third-ordernon-linearopticalpropertiesandultrafastopticalswitchingofchalcogenideglasses.JCeramSocJapan1997;105(12):1115–9.[29]TanakaK.Photoinducedprocessesinchalcogenideglasses.CurrOpinSolidStateMaterSci1996;1(4):567–71.

[30]

MiuraK,QiuJ,InouyeH,MitsuyuT,HiraoK.Photowrittenopticalwaveguidesinvariousglasseswithultrashortpulselaser.ApplPhysLett1998;71(23):3329–31.

[31]TanakaK,IshidaK.Photoinducedanisotropicstructureinchal-cogenideglass.JNon-CrystSolids1998;230:673–6.

[32]TanakaK.Photo-expansioninAS2S3glass.PhysRev1998;B57(9):5163–7.

[*33]

TanakaK,IshidaK,YoshidaN.Mechanismofphotoinducedanisotropyinchalcogenideglasses.PhysRev1996;B54(13):9190–5,Interestinganalysisoftheeffectofilluminationonstructuralreorganization.

[34]TanakaK.Lightinducedanisotropyinamorphouschalcogenides.Science1997;277(5333):1786–7.

[35]

ZhouZH,NasuH,HashimotoT,KamiyaK.Non-linearopticalpropertiesandstructureofNa2S–GeS2glasses.JNon-CrystSolids1997;215(1):61–7.

[36]

Cerqua-RichardsonKA,McKinleyJM,LawrenceB,JoshiS,VilleneuveA.Comparisonofnon-linearopticalpropertiesofsulfideglassesinbulkandthinfilmform.OptMater1998;10(2):155–9.

[37]

Berdie

´G,RabinovichWS,SangheraJ,AggarwalIS.FabricationofJ.Lucas/CurrentOpinioninSolidStateandMaterialsScience4(1999)181–187187

microlensesinbulkchalcogenideglass.OptCommun1998;152(4–6):215–20.

[38]

Asobe

´M,OharaT,YokohamaI,KainoT.FabricationofBragggratinginchalcogenideglassfiberusingthetransversehalographicmethod.ElectronLett1996;32:1611.

[39]SutoH.Chalcogenidefiberbundlefor3Dspectroscopy.InfraredPhysTechnol1997;38(4):93–9.

[40]SangheraJS,AggarwalIS.DevelopmentofchalcogenideglassfiberopticsatNRL.JNon-CrystSolids1997;213–214:63–7.

[41]

MossadeghR,SangheraJS,SchaafsmaD,ColeBJ,NyngenVQ,MiklosRE,AggarwalIS.Fabricationofsinglemodechalcogenideopticalfiber.JLightwaveTechnol1998;16(2):214–7.

[42]

LeNeindreL,LeFoulgocK,ZhangXH,LucasJ,GilbertF,LescoatO,ArdouinF,MorillonP.IRglassopticalfibersforCO2laserwelding.ProcSPIE,ProgBiomedOptics1997;2977:2–13.

[43]

Hocde

´S,LeNeindreL,LeFoulgocK,BoussardC,LeRouxP,ZhangXH,LucasJ.RecentimprovementsinthedevelopmentofIRTeXglassfibers.ProceedingsoftheSocietyofPhoto-Instrumen-tationEngineers1998;3262:144–9.

[44]

LeFoulgocK,LeNeindreL,Hocde

´S,SmektalaF,ZhangXH,LucasJ.Preparation,optimizationandinfraredapplicationsofTeX

glassopticalfibers.ProceedingsoftheSocietyofPhoto-Instru-mentationEngineers,InternationalSymposiumonLasersandMa-terialsinIndustry,1998(Quebec).´Tobepublishedin1999.

[45]

LucasJ,ZhangXH,LeFoulgocK,FonteneauG,FogretE.Non-oxydeglassesforopticalwaveguidesapplications.JNon-CrystSolids1996;203:127–34.

[46]

LeFoulgocK,LeNeindreL,ZhangXH,LucasJ.TaperedTeXglassopticalfibersforremoteIRspectroscopicanalysis.ProcSPIE1996;2836:26–36.

[47]

InagawaI,MorimotoS,YamashitaT,ShirotaniI.Temperaturedependenceoftransmissionlossofchalcogenideglassfibers.JApplPhysJpn1997;36(4A):2229–35.

[48]

FengXW,BresserWJ,ZhangM,GoodmanB,BoolchandP.Roleofthenetworkconnectivityontheelastic,plasticandthermalbehaviourofcovalentglasses.JNon-CrystSolids1997;222:137–43.

[49]

MitkovaM,BoolchandP.Microscopicoriginoftheglassformingtendencyinchalcohalidesandconstrainttheory.JNon-CrystSolids1998;240:1–21.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top