ISO HIGH SIDE SMART POWER SOLID STATE RELAY
Table 1. General Features
TypeVN16BPS
VDSS40 V
RDS(on)0.06 Ω
IOUT5.6 A
VCC26 V
Figure 1. Package■
MAXIMUM CONTINUOUS OUTPUT CURRENT: 20 A @ Tc= 85°C
5V LOGIC LEVEL COMPATIBLE INPUTTHERMAL SHUT-DOWN
UNDER VOLTAGE PROTECTIONOPEN DRAIN DIAGNOSTIC OUTPUTINDUCTIVE LOAD FAST DEMAGNETIZATIONVERY LOW STAND-BY POWER DISSIPATION
101■■■■■■
PowerSO-10DESCRIPTION
The VN16BPS is a monolithic device made usingSTMicroelectronics VIPower Technology,intended for driving resistive or inductive loadswith one side grounded.
Built-in thermal shut-down protects the chip fromover temperature and short circuit.
The open drain diagnostic output indicates: openload in off state and in on state, output shorted toVCC and overtemperature. Fast demagnetizationof inductive loads is achieved by negative (-18V)load voltage at turn-off.
Table 2. Order Codes
PackagePowerSO-10
TubeVN16BSP
Tape and ReelVN16BSP13TR
REV. 2
June 2004
1/11
http://oneic.com/
VN16BSP
Figure 2. Block DiagramTable 3. Absolute Maximum Ratings
SymbolV(BR)DSS IOUTIOUT(RMS)
IRIIN– VCCISTATVESDPtotTjTstg
Parameter
Drain-Source Breakdown VoltageOutput Current (cont.) at Tc = 85 °CRMS Output Current at Tc = 85 °C
Reverse Output Current at Tc = 85 °C (f > 1Hz)Input Current
Reverse Supply VoltageStatus Current
Electrostatic Discharge (1.5 kΩ, 100 pF)Power Dissipation at Tc = 25 °CJunction Operating TemperatureStorage Temperature
Value402020–20±10–4±10200082-40 to 150-55 to 150
UnitVAAAmAVmAVW°C°C
2/11
http://oneic.com/
VN16BSP
Figure 3. Connection DiagramsFigure 4. Current and Voltage ConventionsTable 4. Thermal Data
SymbolRthj-caseRthj-amb
Parameter
Thermal Resistance Junction-case
Max
Value1.550
Unit°C/W°C/W
Thermal Resistance Junction-ambient (1)Max
Note:1.When mounted using minimum recommended pad size on FR-4 board.
3/11
http://oneic.com/
VN16BSP
ELECTRICAL CHARACTERISTICS
(8 < VCC < 16 V; -40 ≤ Tj ≤ 125 °C unless otherwise specified)Table 5. Power
SymbolVCCIn(2)RonISVDS(MAX)
Rj
Parameter
Supply VoltageNominal CurrentOn State ResistanceSupply CurrentMaximum Voltage DropOutput to GND Internal Impedance
Tc = 85 °C; VDS(on) ≤ 0.5; VCC = 13 VIOUT = In; VCC = 13 V; Tj = 25 °COff State; VCC = 13 V; Tj ≥ 25 °CIOUT = 20 A; VCC = 13 V; Tc = 85 °CTj = 25 °C
15
10
Test Conditions
Min.65.60.038
25Typ.13
Max.268.80.06501.820
UnitVAΩµAVKΩ
Note:2.In= Nominal current according to ISO definition for high side automotive switch. The Nominal Current is the current at Tc = 85 °C
for battery voltage of 13V which produces a voltage drop of 0.5 V.
Table 6. Switching
Symboltd(on)(3)tr(3)td(off)(3)tf(3)(di/dt)on(di/dt)offVdemag
Parameter
Turn-on Delay Time Of Output CurrentRise Time Of Output Current
Turn-off Delay Time Of Output CurrentFall Time Of Output Current
Turn-on Current SlopeTurn-off Current SlopeInductive Load Clamp Voltage
Test Conditions
Rload = 1.6 ΩRload = 1.6 ΩRload = 1.6 ΩRload = 1.6 Ω
Rload = 1.6 Ω; VCC = 13 VRload = 1.6 Ω; VCC = 13 VRload = 1.6 Ω; L = 1 mH
Min.54010400.0080.008–24
–18Typ.50100100100
Max.5006805006800.10.1–14
UnitµsµsµsµsA/µsA/µsV
Note:3.See Switching Time Waveforms.
Table 7. Logic Input
SymbolVILVIHVI(hyst)IINVICL
Parameter
Input Low Level VoltageInput High Level VoltageInput Hysteresis VoltageInput CurrentInput Clamp Voltage
VIN = 5 V; Tj = 25 °CIIN = 10 mAIIN = –10 mA
5
6–0.7
3.50.2
1
Test Conditions
Min.
Typ.
Max.1.5Note 41.51007
UnitVVVµAVV
Note:4.The VIH is internally clamped at 6V about. It is possible to connect this pin to an higher voltage via an external resistor calculated
to not exceed 10 mA at the input pin.
4/11
http://oneic.com/
VN16BSP
ELECTRICAL CHARACTERISTICS (cont’d)Table 8. Protection and Diagnostics (cont’d)
SymbolVSTATVUSDVSCLTTSDTSD(hyst.)
TRVOL(5)IOLtpovl(6)tpol(6)
Parameter
Status Voltage Output LowUnder Voltage Shut DownStatus Clamp Voltage
Thermal Shut-down TemperatureThermal Shut-down HysteresisReset TemperatureOpen Voltage LevelOpen Load Current LevelStatus DelayStatus Delay
50
Off-StateOn-State
1252.50.15
54003.8
50.85102500
ISTAT = 10 mAISTAT = –10 mA
Test Conditions
ISTAT = 1.6 mA
3.55140
56–0.716015
Min.
Typ.
Max.0.46718050
UnitVVVV°C°C°CVAµsµs
Note:5.IOL(off) = (VCC -VOL)/ROL (see figure 5).
6.tpovl tpol: ISO definition (see figure 6).
Figure 5. Note 5 relevant figureFigure 6. Note 6 relevant figure5/11
http://oneic.com/
VN16BSP
Figure 7. Switching Time WaveformsFUNCTIONAL DESCRIPTION
The device has a diagnostic output whichindicates open load in on-state, open load in off-state, over temperature conditions and stuck-on toVCC.
From the falling edge of the input signal, the statusoutput, initially low to signal a fault condition(overtemperature or open load on-state), will goback to a high state with a different delay in caseof overtemperature (tpovl) and in case of openload (tpol) respectively. This feature allows todiscriminate the nature of the detected fault. Toprotect the device against short circuit and overcurrent condition, the thermal protection turns theintegrated Power MOS off at a minimum junctiontemperature of 140 °C. When this temperaturereturns to 125°C the switch is automatically turnedon again. In short circuit the protection reacts withvirtually no delay, the sensor being located insidethe Power MOS area. An internal function of thedevices ensures the fast demagnetization ofinductive loads with a typical voltage (Vdemag) of -18V. This function allows to greatly reduces thepower dissipation according to the formula:
Pdem = 0.5 • Lload • (Iload)2 • [(VCC+Vdemag)/Vdemag] • f
where f = switching frequency andVdemag = demagnetization voltage
The maximum inductance which causes the chiptemperature to reach the shut-down temperaturein a specified thermal environment is a function ofthe load current for a fixed VCC, Vdemag and f
according to the above formula. In this device if theGND pin is disconnected, with VCC not exceeding16V, it will switch off.
PROTECTING THE DEVICE AGAINST REVERSE BATTERY
The simplest way to protect the device against acontinuous reverse battery voltage (-26V) is toinsert a Schottky diode between pin 1 (GND) andground, as shown in the typical application circuit(Figure 10).
The consequences of the voltage drop across thisdiode are as follows:
–If the input is pulled to power GND, a negativevoltage of -Vf is seen by the device. (VIL, VIHthresholds and VSTAT are increased by Vf withrespect to power GND).
–The undervoltage shutdown level is increa- sedby Vf.
If there is no need for the control unit to handleexternal analog signals referred to the powerGND, the best approach is to connect thereference potential of the control unit to node [1](see application circuit in Figure 10), whichbecomes the common signal GND for the wholecontrol board avoiding shift of VIH, VIL and VSTAT.This solution allows the use of a standard diode.
6/11
http://oneic.com/
VN16BSP
Table 9. Truth Table
Input
Normal OperationOver-temperatureUnder-voltageShort load to VCCOpen Circuit
Note:7.With an additional external resistor.
OutputLHLLHHHL
Diagnostic
HHLHLLLL(7)
LHXXHLHL
Figure 8. Waveforms7/11
http://oneic.com/
VN16BSP
Figure 9. Over Current Test CircuitFigure 10. Typical Application Circuit With A Schottky Diode For Reverse Supply ProtectionFigure 11. Typical Application Circuit With Separate Signal Ground8/11
http://oneic.com/
VN16BSP
PACKAGE MECHANICAL
Table 10. Power SO-10 Mechanical Data
SymbolAA (8)A1BB (8)CC (8)DD1EE2E2 (8)E4E4 (8)eFF (8)HH (8)hLF (8)aα (8)Note:8.Muar only POA P013P.
Min3.353.40.000.400.370.350.239.407.409.307.207.305.905.901.251.2013.8013.85
millimetersTypMax3.653.60.100.600.530.550.329.607.609.507.607.506.106.301.351.4014.4014.35
1.270.501.200.800º2º1.801.108º8ºFigure 12. Power SO-10 Package DimensionsB0.10AB10HEE2E41SEATING PLANEe0.25BDETAIL \"A\"ACD= =D1= =hAFA1SEATING PLANEA1LDETAIL \"A\"αP095ANote:Drawing is not to scale.
9/11
http://oneic.com/
VN16BSP
REVISION HISTORYTable 11. Revision History
DateMarch-199818-June-2004
Revision
12
First Issue
Stylesheet update. No content change.
Description of Changes
10/11
http://oneic.com/
分销商库存信息:
STM
VND10BSP-EVND10BSP
VND10BSP13TR
VND10BSPTR-E
因篇幅问题不能全部显示,请点此查看更多更全内容