1
Website:http://AIMsciences.org
pp.313–341
MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI:
EXTREMALSTATESOFTHELOGARITHMICN-BODY
PROBLEMONASPHERE
CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD
DedicatedtoProfessorLawrenceSirovichontheoccasionofhis70thbirthday.
(CommunicatedbyKa-KitTung)
Abstract.TheproblemofNbodiesonthesurfaceofthesphereinteract-ingbyalogarithmicpotentialisexaminedforselectedNrangingfrom4to40,962,comparingtheenergiesfoundbyplacingpointsattheverticesofcer-tainpolyhedronstothelowestenergiesfoundbyaMonteCarloalgorithm.Thepolyhedronfamiliesaregeneratedfromsimplepolyhedronsthroughtwotriangularfacesplittingoperationswhichareusediterativelytoincreasethenumberofvertices.Theclosestenergyofthesepolyhedronvertexconfigura-tionstotheMonteCarlo-generatedminimumenergyisidentifiedandthetwoenergiesarefoundtoagreewell.Finallytheenergyperparticlepairisfound
1toasymptoticallyapproachameanfieldtheorylimitof−2(log(2)−1),ap-proximately0.153426,forboththepolyhedronandtheMonteCarlo-generatedenergies.Thedeterministicalgorithmofgeneratingpolyhedronsisshowntobeamethodabletogenerateconsistentlygoodapproximationstotheextremalenergyconfigurationforawiderangeofnumbersofpoints.
1.Introduction.ConsiderNpointvortices,allofuniformstrength,onthesur-x2,...xNfaceoftheunitsphere.Ifthepositionsofthesevorticesaregivenbyx1,
thentheenergyofthissystemis[7][10][12][13]
E=−log|1−xj·xk|(1)
1≤j pointsareofgreatinterest.Ithasbeenseen[11]thataMonteCarlo-basedalgo-rithmisabletofindnumericallyconfigurationswhicharelocalminimumsofthepotentialenergyfunction[2].Onemayalsoapproachenergyminimumsbyalgorith-micapproacheswhichtrytouniformlyplacepointsoverthesurfaceofthesphere[3][13].Thisproblemisequivalenttothatofmaximizingtheproductofdistancesbetweenpoints,butrelatedproblemsincludethatofsphericalcodeswhichtrytomaximizetheminimumdistancebetweenpoints,ortheThompsonproblemofequalelectricalchargesonthesphere[1][4].Theserelatedproblemsyieldsimilarbutnotidenticalresults. Inthispaperanapproachbasedonsolidgeometriesisconsidered.Asetofpointsonthesurfaceofthesphereappearsnaturallytocorrespondtotheverticesofcertainpolyhedrons(forexample,fourvorticesofuniformstrengthwillonthe author:limc@rpi.edu.MathematicsDepartment,RensselaerPolytechnicIn-stitute,Troy,NY12180USA. 1Corresponding 313 314CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD spherereachanenergyminimumattheverticesofatetrahedron).Thisleadstotheapproachofconstructingpolyhedronsandusingthelocationsoftheverticesofthoseaspointsonwhichtoplacevorticesonthesphere.Onebeginswithabasepolyhedron,inthispaperonewithexclusivelytriangularfaces,andconstructsmorecomplexpolyhedronsfromthatshape.WiththesegeneratedpolyhedronsthenoneplacesvorticesofuniformstrengthateachvertexandstudiestheHamiltonianofthatconfiguration. Obviouslynotallpolyhedronsmaybeusedinthisapproach.Onlypolyhedronswhichcanhaveallverticesfitonthesurfaceofthesphereareapplicable.Thesetofbasepolyhedronsusedforthispaper(section4)beginswithseveralwhichdofitthesurfaceofthesphere(andwhoseverticesfurthermorecorrespondtoanenergyminimumforvortices).Toconstructamorecomplexpolyhedrononeappliesoneofthe‘facesplitting’operations. Eitherofthefacesplittingoperationsusedinthispaper(sections4.1and4.2)takesanexistingtriangularfaceandaddsoneormoreverticestotheportionofthesphere’ssurfaceradiallyoutwardfromthatface.Newedgesarethendrawnfromtheoriginalface’sverticestothenewverticesaddedbytheoperation,andnewfacesaredrawnamongtheoriginalandaddedpoints.Thisconstructionsplitstheoriginaltriangularfaceintomultiplenewtriangularfaces,andincreasesthenumberofverticesinthepolyhedron,butstillcreatesapolyhedronwithitsverticesonthesurfaceofthesphereandwhichmaythenbesplitagain. Onlytwofacesplittingoperationsareconsideredastheyyieldedalargeenoughsetofshapestobeinteresting,butthereisnoreasontosupposetherearenotmoreoperationswhichcouldbeemployedbysimilartechniques.SaafandKuiljaars,studyingsphericalcoding,outlinea‘spiralplacing’ofpointswhichappearsfittabletothefaceshere[13].ThelatticesexploredbyBowick,Cacciuto,Nelson,andTravesset[4]andthetriangulationsusedbyAltschuler,Williams,Ratner,Tipton,Stong,Dowla,andWooten[1]andthoseusedbyBaumgardnerandFrederickson[3]alsosuggestfacesplittingoperationswhichcouldbeproductiveforthissortofpolyhedron-basedinvestigation. Alsointhispaperonlyasinglefacesplittingoperationwasdoneateachiteration,withthesamesplitperformedforeveryfaceoftheoldpolyhedron.Extensionstothisroutinetosplitdifferentfacesbydifferentrulescanbeimagined,butarenotasobviouslyorganizedforconvenientstudy. Theoriginalshapesenjoyanearlyuniformvertexdegreecount,withmostver-ticesbeingasconnectedasanyothervertexis.Itisfoundapplyingthesefacesplittingoperationsmaydisrupttheuniformityofthevertexdegrees,butarguedthatthevertexdegreesarenotofinterestinthisproblem–theedgesareanartifactofthepolyhedronsusedtoplacepointsandarenotofphysicalmeaning(section4.4).Theedgesmayberedrawnforconvenience. Asaresultbyrepeatedlyapplyingachoiceofthefacesplittingoperationsonecancreateabinarytree-likestructureofpolyhedronsofincreasingdegree(section4.3).Asthetwofacesplittingoperationsconsideredheredonotcommutetheplacementofpoints,butdogeneratethesamenumberofpointswhicheverordertheyareappliedin(section4.5),thebinarytree-likestructureismorecompelling(section4.6).Onecancreateseveraldistinctpolyhedronswithequalnumbersofverticesandstilldifferentenergies(section5). TheverticesofcertaingeneratedpolyhedronsarefoundtohaveenergiesclosetotheextremalstateenergyasgeneratedbyaMonteCarloalgorithm(sections2, MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI315 5).Thepolyhedronsgeneratedfromthetetrahedron(section6),fromtheoctahe-dron(section7),andtheicosahedron(section8)areexamined,tolocateminimumenergiesgeneratedbytheMonteCarlomethodforanequalnumberofvortices.TheenergyperparticlepairiscomparedforthevorticesplacedatthepolyhedronconfigurationsaswellasfortheMonteCarlo-generatedextremalstates,anditisfoundbothpairwiseenergiesagreewithoneanother(section9.1)andtend,inthelimitasthenumberofparticlesgrowsinfinitelylarge,asymptoticallytowardsameanfieldlimit[2](section9.2)(cfLim[9])whichisfoundtobeapairwiseparticleenergyofapproximately0.153426.2.NumericalTools. 2.1.MonteCarloAlgorithm.Givenasystemofnpointvortices,allofuniformstrength(assumedtobe1),thepotentialenergywillbe z2,...,zn)=−H(z1, n1≤j forparticlesonthesurfaceofthesphere(withzj=(xj,yj,zk)thecoordinatesof vortexj,andtheconstraintthat|zj|≡1forallj)[7][8][12]. AMetropolis-ruleMonteCarloalgorithmisemployedtofindanequilibriumconfigurationforthissystem.Eachsweepisaseriesofnexperiments,ineachofwhichonevortexis(randomly)selected.Oneachvortexaproposeddisplacementistested:Considermovingthechosenvortexbyarotationaroundarandomlyselectedaxisbyanangleuniformlydistributedon(0,).Thechangeinenergy∆Hthisrotationwouldcauseiscalculated.Basedonapreselectedinversetemperatureβ,andarandomlychosennumberruniformlydistributedon(0,1),thechangeis acceptedifr Theuseofjustafinitenumberofsweepsbeforeconsideringthesystemtobeatornearlyattheenergyminimumisjustifiedbyfigure1,inwhichtheenergyofthesystem(pernumberofpairsofparticles)iscomparedforavarietyofnumbersofvortices.Ineachcasetheenergy(perpair)declinesrapidlyfromaninitialvalueandsettlestoanearlyuniformlevelwithinseveralhundredsweeps.Forupto642vorticiesjust500sweepssufficestoreachthisextremalconfiguration. ItisanunavoidableconsequenceoftheMonteCarloalgorithmthatitisunlikelytoproduceexactlytheglobalminimumforanynumberofpoints.Supposethatoneparticleisoutofthis‘exact’positionbyasmallangle.ThelikelihoodthataMonteCarlosweep,whenitdoespickthisvortextomove,willpickjustthecorrectdirectionandjustthecorrectangletofitthevortexexactlyinplaceistiny.However, 316CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD Energy per Particle Pair versus Sweeps Completed0.20.180.16Energy per Particle Pair 20 32 501102586420.140.120.10.080.060100200300400500600Sweeps Completed7008009001000Figure1.Systemenergy(perpairofpoints)versusthenumberofsweepscompletedfor20,32,50,110,258,and642pointsonthesurfaceofthesphere.Convergenceoccurswithinseveralhundredsweeps,asitappearstodofortherangeofNvaluesexaminedinthispaper. thedifficultyintheseexactmatchesiscausedbythesystemreachingaverygoodconfigurationwithinthesefirstseveralhundredsweeps–themoveswhichproducegreatdecreasesinthesystemenergyaremade,andonlyincrementalimprovementsremainavailable. ItisalsoaconsequencethatastheMonteCarloalgorithmproducesastatisticalequilibriumitisnotguaranteedthatthepointsgeneratedarenearadynamicequilibrium.Ifeachattemptedmoveofapointmayspreadoverawideenoughregion,andtheinversetemperatureusedtodrivethesystemtowardequilibriumislargeenough,itislikelythatlocalminimumswillbeescaped. NeverthelesstheseproblemsdopersistwiththeMonteCarloalgorithm,andresultinahandfulofanomaliessuchasthatseeninsections8.3.1and8.3.2,inwhichtheMonteCarloalgorithmdoesnot(inits40,000sweeps)reachanenergyquiteaslowasthatachievedbytheicosahedronsplitbythegeodesicwordCG(section4). 2.2.RadialDistributionFunction.Theradialdistributionfunction–atermwhichisborrowedfromthestatisticalmechanicsofgases–studiesthedensityofparticlesrelativetoauniformdensity,atagivenradiusfromanygivenreferencepoint[6].Inthispapertheuseofsuchafunctionisstraightforward–thevortex MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI317 particlesbehaveinsomewayslikeagas–andsoitservesasatoolbywhichthestructureofthesystemcanbemeasured(cf.alsoLim,Nebus,andAssad[11]).Theradialdistributionfunctionisdefinedforagivenangularseparationθ.(Thisseparationisequivalent,onthesurfaceoftheunitsphere,tothedistanceθ.)Itisconstructedheretobethesetoforderedpairsofangularseparationsθwiththenumberofpairswhichhavethatseparation. Definition1.Forasetofparticlesxj,j=1...Ndefinetheradialdistributionfunctiontobethesetoforderedpairs D={(θ,n)|nisthenumberofpairsofpointswithseparationθ}–thatis,θisaradialseparationwithnpairsofpointswiththatseparation.Inthestudiesofgasandcrystalpropertiesfromwhichthenotionofaradialdistributionfunctionisderived,theradialdistributionfunctionistakentobethenumberofpairsseparatedbyagivenrangeofdistances,dividedbythenumberofpairswhichwouldbeexpectedinacompletelyuniformdistribution–typicallymeaningonedividesthenumberofparticlesinashellbyauniformdensitytimesthevolumeofthatshell[6].Forthispaperthatnormalizationisnotused. Inthispapergraphsoftheradialdistributionfunctionsaresimplifiedbygrouping πapart,makingtheplotsrepresentthenumberstogetherangleswhichare∆θ=180ofverticesperdegreeapart. 3.TheMeanFieldLimit.Theproblemofpointvorticesonthesphereisbe-lievedtotakeonameanfieldlimitasthenumberofparticlesgrowsinfinitelylarge(cfBergersen’scalculationsin[2]).Onecanestimatetheexpectedenergyperparti-clepairforthiscontinuumlimitbecauseasthenumberofparticlesgrowsinfinitelylargethemostprobablevorticitydistributionbecomesauniformdensityρ.Thenonecalculatestheexpectedtotalenergytobe 1 ρ2log|1−x·y|dAdAE=− 2DDwhereDisthesurfaceoftheunitsphere,dAisatxanddAisaty.Thefactor12wasintroducedtopreventdoublecountingofeachparticlepair.Ifonefirstkeepx atθ=0andperformtheintegrationoverdA,onehas 1 E=−ρ2log|1−cos(θ)|dAdA 2DD 2ππ 12 =−ρdAdφdθlog|1−cosθ|sinθ(4) 200D 12 =−ρdA2π(2log2−2) 2D NowifoneintegratesoverdA,onewouldget 1 E=−ρ28π2(2log2−2) 2 NForsufficientlylargefinitevaluesofN,bysettingthevortexdensityρ=4πinequation4,oneobtainsthefollowingboundsfortheexpectedtotalenergyEN (3) 0≤EN≤ 1N2 (2log2−2)−22 318CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD withENthemostprobableenergyforthisuniformlyspreadpointparticles.Butmorethanthat,themeanfieldlimit(ifitholds)statesthat EN N−>∞N2lim 1 =−(log2−1)∼0.153426 2 Thusasthenumberofvorticesgrows,themeanfieldenergyperparticlepairwillapproachaconstantofapproximately0.153426.Thenumericalresultsexaminedinsection9.2andplottedinfigures9and10stronglysupporttheexistenceofthismeanfieldlimitinthisproblem. 4.PolyhedronShapes.Beginwithaconvexpolyhedronwithfacescomposedentirelyoftriangles.Thoughthefacesneednotberegular,thePlatonicsolidsofthetetrahedron,theoctahedron,andtheicosahedronformausefulbasicsetand(asisseeninsections6.1,7.1,and8.1)allrepresentextremalstatesforthevortexproblemwiththecorrespondingnumberofvortices. DaudSuttonconsiders[14]manypolyhedronshapeswhichmaybeconstructedbyperformingseveraloperationsonpolyhedraoffewervertices.Suchoperationsincludethetakingofdualstoexistingpolyhedra,truncatingtheverticesofashape,compoundingofseveralpolyhedratogether,twistingofedges,andthelike.Thisopensagreatarrayofshapestoconsider.Forthispaper,aminimalsetofoperations–calledthecentroidsplitandthegeodesicsplit–areusedtoconstructrobustfamiliesofpolyhedra.4.1.CentroidSplitting. Definition2.TheCentroidsplitofatriangleABCistoaddtoitapointDwheretheraybeginningatthecenterofthesphereandpassingthroughthecentroidofABCintersectsthesphere,andaddingtothepolyhedrontheedgesAD,BD,andCD. ThisconstructiondoesnotpreservethedegreesoftheoriginalpointsA,B,orC,butitisarguedinsection4.4suchdegreecountsarearbitrarypropertiesanddonotrequireanyattention. Thissplittingincreasesthenumberofverticesinthepolyhedronbythenumeroffaces,triplesthenumberoffaces,andaddsthreetimesthenumberoffacestothenumberofedges.Fromthisconstructionthecountofvertices,edges,andfacesinthenewpolyhedronis: vef =v+f=e+3f= 3f, (5) Anapparentanomalyofthecentroidsplittingisthatcertainconfigurationsmayappeartocreateasquarefacefromwhatwasoriginallyapolyhedronwithonlytriangularfaces–notably,ifonetakesthecentroidsplitofaregulartetrahedrontheresulthasverticesatthecornersofthecube.Ifonedoesnotlosetheedgeinformationasoriginallycreatedthiseffectwillnotpropagate–eitherthegeodesicorthecentroidsplitafterthisshapewillrestorethefiguretowhatareclearlytriangularfaces. MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI319 Figure2.Anexampleofthecentroidsplit.ThecentroidoftheplanartriangleABCisadded,andthenthepointatwhichtherayfromthecenterofthespherepassingthroughthiscentroidisaddedasD.TheedgesAD,BD,andCDareadded. 4.2.GeodesicSplitting. Definition3.TheGeodesicsplitofatriangleABCistoaddtoitapointEwheretherayfromthecenterofthesphereandpassingthrughthemidpointofABintersectsthesphere,apointFsimilarlybasedonthebisectionofBC,andapointGsimilarlybasedonthebisectionofCA,andaddingtothepolyhedrontheedgesEF,FG,andGE,andfurthermoreaddingedgesAEandEBinplaceofAB,addingedgesBFandFCinplaceofBC,andedgesCGandGAinplaceofCA.Thissplittingpreservesthedegreesoftheoriginalpolyhedron’svertices,andaddsonlyverticesofdegreesix. Thissplittingincreasesthenumberofverticesinthepolyhedronbythenumberofedges,quadruplesthenumberoffaces,anddoublesandthenaddsthreetimesthenumberoffacestothenumberofedges.Fromthisconstructionthecountofvertices,edges,andfacesinthenewpolyhedronis: vef =v+e=2e+3f= 4f, (6) 320CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD Figure3.Anexampleofthegeodesicsplit.ThemidpointsofgeodesicsAB,BC,andCAareaddedasthepointsE,F,andGrespectively,andthentheedgesEF,FG,andGEareadded. 4.3.GeodesicWords.Byapplyingthecentroidandgeodesicsplittingsrepeat-edlyfromanoriginalshapeafamilyofrelatedpolyhedronsmaybeconstructed.LettingCstandforacentroidsplitandGstandforageodesicsplitonecancon-structageodesicwordfromabasicpolyhedrontomuchmoercomplexshapes.Definition4.AGeodesicWordisastringofCandGoperationsrepresentingtherepeatedsplittingoffacesofabasicpolyhedron. AsexamplethewordCCCGrepresentsthreecentroidsplitsandthenageodesicsplitfromoneoftheoriginalpolyhedrons. 4.4.VertexDegreesbyVoronoiMethods.Awell-knownresultinthestudyofpolyhedrons[14]composedprimarilyoftriangleandsquarefacesrelatesthenumberofverticesandtheirdegreestogether,andholds 2v4+v5−v7−2Q=12 (7) wherev4isthenumberofverticesofdegreefour,v5thenumberofverticesofdegreefive,v7thenumberofverticesofdegreeseven,andQthenumberofsquarefaces.Inapplyingthegeodesicsplittingofafacevorticesofonlydegreesixarecreated,andsothenewpolyhedronsatisfieswithouteffortintotheaboverelationship.In MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI321 thecentroidsplit,however,thedegreesofallexistingverticesaredoubled,andanumber(equaltothenumberoffacesinthepolyhedronbeingsplit)ofnewverticesofdegreethreearecreated,resultinginashapewhichdoesnotimmediatelyfitthisrelationshipatall. Thereforeifthecountofvertexdegreesisofinterest–thoughformechanicalpropertiessuchasthesystem’spotentialenergyitisnot,sincetheedgeshoweverdrawndonotchangethelocationsofverticesandthereforedonotaffecttheme-chanicsatall–eithertherelationshipofequation7mustbeabandonedoronemustredrawvertexedgesaftereachcentroidsplit.Iftheedgelinesareredrawn,andnewtriangularfacescreated,aregularalgorithmforsuchredrawingisnecessary.OnesatisfactoryalgorithmistouseamethodbasedonVoronoidiagrams.Definition5.Avertexdegree,afterredrawing,isequaltothedegreeofthepolygonwhichsurroundsthatvertexoncetheVoronoidiagrambasedonthesetofallthepolyhedron’sverticeshasbeendrawn. AVoronoidiagramtakesabasesetofNpointsanddividesthedomainintoNregions,eachofwhichconsistsofthepointsclosesttoexactlyonepointoftheoriginalbaseset.Theboundariesoftheseregionswillbepolygons,inthiscaseonthesurfaceofthesphere. xjifandonlyiftheregionsurroundingxiisDrawanedgefrompointxito adjacenttothatsurroundingxj.Thisnewsetofedgesbasedonthecentroidalgorithmrestorestheverticeswhichhadoriginallybeendegreefivetothatdegreeagain,restoresthosewhichhadbeendegreesixtothatagain,andsetsthenewverticestodegreesix.Asaresulttherelationship7again. Thismethodbreaksdown,bycreatingnontriangularfaces,iftwoormoread-jacentfacesofthesplitpolyhedronarecoplanar.EffectivelyifthefigurehasanontriangularfacetheVoronoi-basedredrawingofedgeswillpropagatethatnon-triangularface. 4.5.NoncommutivityofCandGoperations.AcursoryexaminationofthetheresultofwordsCGandofGConanytrianglefacesuggeststheoperationsmaycommute.Ineitherordertheoriginalfaceissplitintotenpoints,anddrawingtheeffectsoftheseoperationsonaplanartrianglereinforcesthissuggestion. Theorem1.Foratrianglerestingintheplane,thecentroidsplitandthegeodesicsplitofthattrianglearecommutativeoperations. Proof.LettriangleABCrestintheplane.AcentroidsplitcreatesthepointDandtheedgesAD,BD,andCD.ThegeodesicsplitofthiscreatespointEbisectingAB,pointFbisectingBC,pointGbisectingCA,pointHbisectingAD,pointIbisectingBD,andpointJbisectingCD. Nowconsiderthegeodesicsplitfollowedbythecentroidsplit.AgainontriangleABC,letpointEbisectAB,FbisectBC D∼DasthetriangleEFGissimilartoABC,withedgeEFparalleltoAB,FGparalleltoBC,andGEparallelCA.H∼HbecauseAEGissimilartoABC,withthelengthAEhalfthatofAB(andsoon),thereforethedistancefromAtothecentroidHishalfthedistancefromAtothecentroidD.BysimilarargumentsI∼IandJ∼J. Thusontheplanethecentroidandgeodesicsplittingsofatrianglecommuteintheirplacementofpoints. 322CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD Figure4.Anillustrationofhowthecentroidandgeodesicsplitsmaybeexpectedtocommute.AsconstructedontheplanethetriangleAEGmustbesimilartoABC(andsimilarlyEBFandGFCarealsosimilartoABC),makingitpossibletoshowthecentroidandgeodesicoperationsmaybeperformedineitherorder.However,similartrianglesdonotexistonthesurfaceofthesphereandsotheproofbreaksdown.Figure5providesanexampleoftheCGwordresultingindifferentpointsthantheGCworddoes. Corollary2.Forasphericaltrianglethecentroidandgeodesicsplittingsdonotcommute. Proof.Commutivityholdfortrianglesonthesurfaceofthesphere,whichformthegeometryusedinthesepolyhedronsplittings.CriticaltotheproofofthecommutivityintheplaneistheuseofsimilartrianglestoshowtheequalpositioningofpointsHandH,ofIandI,andofJandJ.Similartrianglesdonotexistonthesurfaceofthesphereandasaresulttheproofdoesnothold–andinpracticeanexaminationofthedifferencebetweenCGandGCstartingfromasimplepolyhedronshowsthis.Figure5showsanexampleofthesenoncommutingoperations.Whilethegraphsofvertexpositionsmaynotbeobvious,thedifferencesbetweentheirradialdistributionfunctionsdemonstratetheycannotbeequivalentconfigurations:oneisnotarotationorreflectionoftheother. MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI Octahedron CGOctahedron GC323 110.50.500-0.5-0.5-110.50-0.5-1-10-0.50.51-110.50-0.5-1-10-0.50.51Octahedron–CGRadial Distribution Function,Octahedron CG140140120120Octahedron–GCRadial Distribution Function,Octahedron GC1001008080606040402020020406080100120140160180020406080100120140160180RadialDistributionFunction–CGRadialDistributionFunction–GCFigure5.TheoctahedronsplitfirstbythegeodesicwordGCandthenbythewordCG,showingthefinalpolyhedronstonotbeidentical. Itisworthnotingthatastheareaofasphericaltriangledecreases–asthetrianglegetsclosertobeingplaner–thecentroidandgeodesicsplitscomeclosertocommuting,inthattheresultsofaCGandofaGCoperationresultinsetsofpointswhichareclosertooneanother.Thisisultimatelyreflectednumericallyintheenergiesofpolyhedronssplitbylonggeodesicwordsbegintovaryonlyslightlywhentheydifferonlyinthelasttwoletters–andthisdoesnotnecessarilytakemanysplits.Wordsasshortasthreeletterscanseetheirlasttwoletterscomenearcommuting. 4.6.PolyhedronTrees.Fromanyreferencebasepolyhedronwhichhasonlytri-angularfacesonecanperformgeodesicwordsplittingsoneachofthefaces.Iftheyareonthesurfaceofthespheretheneverygeodesicwordrepresentsanewpolyhe-dron.Aseachsplitmaybeeitheracentroidorageodesicsplit,thestructureofabinarytreeissuggested,eachgeodesicwordcorrespondingtoonebranch.Definition6.APolyhedronTreeisthebinarytreeconstructedbytakingapoly-hedronbaseandapplyingtoitallgeodesicwords. Onemaybuildatreeofpolyhedronsbelongingtooneofseveralfamiliesandsocoveringagreatnumberofpossiblenumbersofvertices.Althoughthenumberofgeodesicandcentroidsplitsinaworddefinesthenumberofverticeswhichwillarisefromthatsplittingbeingperformedonabasicshape,thenoncommutivityofthoseoperationsonthesurfaceofthesphereresultsindistinctpolyhedronsforeachcase. 324CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD WordTetrahedronOctahedronBaseShape46C814G1018CC2038CG2650GC2650GG3466CCC56110CCG74146CGC74146CGG98194GCC74146GCG98194GGC98194GGG130258CCCC164326CCCG218434CCGC218434CCGG290578CGCC218434CGCG290578CGGC290578CGGG386770GCCC218434GCCG290578GCGC290578GCGG386770GGCC290578GGCG386770GGGC386770GGGG5141026Icosahedron12324292122122162272362362482362482482642812108210821442108214421442192210821442144219221442192219222562 Figure6.Vertexcountsforgeodesicwordsplittingsfromseveralpolyhedronbases.Thenumberofvertices,aswellasthenumbersoffacesandedges,maybederivedfromformulas5and6. Forthefirstgenerationsofpolyhedronssplitoffthebasepolyhedraofthetetra-hedron,octahedron,andicosahedrononehasthistableofvertexcountsforthewordsoflengthuptofour: Thetablecanclearlybeextendedindefinitely,withthewordsoflengthngener-ating2nuniquevertexconfigurations,butonlyn+1distinctnumbersofvertices.AlthoughinthefirstfewbranchesofthistreeitisnotobservedthatanynumberNmaybegeneratedbytwogeodesicwordswhichhavedifferentnumbersofcentroidandgeodesicsplits(whetherworkingfromthesameordifferentbasepolyhedra),itisnotassertedthatanygivennumbermaybegeneratedfromatmostonebasepolyhedronandnumberofcentroidandgeodesicsplits. MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI325 Severalpolyhedraofinterestaregeneratedbythesebranches:thetetrahedronsplitbyC,forexample,isthecube,andtheicosahedronsplitbyCisthetrun-catedicosahedron(anditsowndual).Extremelyfewofthesepolyhedraareknown“interesting”configurationssuchasPlatonicorArchimedeansolids. Symmetryconsiderationsleadonetoexpectthebasicshapesofthetetrahedron,octahedron,andicosahedronwillrepresentequilibriumconfigurationsforthevortexproblem–vorticesplacedattheverticesofthesepolyhedraontheunitspherewillremaininplace.Similarlyoneexpectsanynumberofpurelygeodesicsplits,orachainofgeodesicsplitsfollowedbyonecentroidsplit,toproduceanotherequilibrium. 5.NumericalResults.ExaminedinthissectionistheagreementbetweentheresultsoftheMonteCarloalgorithmandtheconfigurationofseveralknownpoly-hedronvertices.Initialsuccessesinmatchingtheconfigurationsofpointsforshapessuchasthetetrahedronandtheoctahedronsuggestregularpolyhedronsmayrepre-sentextremalstatesfortheproblemofvorticesonthesurfaceofthesphere.Thisishowevernotthecase,asexaminationoftheproblemwith8vorticesdemonstrates–therectangularantiprismisashapewithalowerenergythanthecubehas.Thenumericalresultsderivedherewererunfor40,000sweepsoftheparticles,withaninversetemperatureβof100,000,000.Themaximumanglebywhichanyvortexwasallowedtomovewas0.05radians.Therandomnumberseedusedwasthetimeofday,andthecalculationsperformedbycomputersrunningMatlab(andreliantuponitsbuilt-inrandomnumbersequencegenerator).Thesourcecodesareavailableuponrequest. ThefirstsubsectionsofeachoftheseconfigurationsistheresultnotofaMonteCarlosimulation,butrathertheresultofusingtheprecisecoordinatesofthever-ticesofapolyhedronasderivedbyperformingthespecifiedsplitsonthefacesofthetetrahedron,octahedron,oricosahedron.Theuseoftheseshapesforreferencevalidatestheroutineswhichcalculatesystemenergy,radialdistributionfunction,andwhichplotthepositionsofthesepoints.Themapsoftheplotsareanunpro-jectedlatitude-longitudesystem,unfortunatelydistortingtoanextenttheanglesbetweenvortexpairsandoccasionallymakingaconfigurationdifficulttoidentify,asinsections6.1.1and6.1.2inwhichbothgraphsdisplayingthesamestateisnotimmediatelyobvious. EachfinalsubsectionistheresultofaMonteCarlosimulationonthecorre-spondingnumberofvorticesalongwiththeenergyofthatstate.ThisisexpectedtobeatorneartheextremalstateenergyforthecorrespondingnumberofvorticesduetotheabilityoftheMonteCarloalgorithmtoescapelocalenergyminimumsandfindeventuallytheglobalminimum. 6.TheTetrahedronTree.6.1.FourPoints. 6.1.1.Tetrahedron.ThetetrahedronisoneofthePlatonicsolids[5]andisacom-monlyrecognizedshape.Inthevortexproblemitisadynamicequilibrium. 326CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD StateEnergy:-1.72609243Latitude-Longitude Plot,Tetrahedron1.56Radial Distribution Function,Tetrahedron150.5403-0.52-11-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure6.1.1aRadialDistributionFunction Figure6.1.1b 6.1.2.FreeParticles.Fourparticlesfindthetetrahedron.AstheMonteCarloalgo-rithmhasnomeansofdetectinglatitudetheconfigurationis‘pointed’inarandomlychosendirection.Becauseofthis,andthedistortionofanglesandareasforcedbyprojectingthesurfaceofthesphereontothelatitude-longituderectangleplotted,thetetrahedronisnotobviousasplotted(asseveralothershapeswillnotbeobviousfromtheirplots,asinsections7.1.2and6.2.2).Theenergyandradialdistributionfunctionindicatethetetrahedronhasbeenfound. StateEnergy:-1.72609239Latitude-Longitude Plot,Monte Carlo, 4 points1.56Radial Distribution Function,Monte Carlo, 4 points150.5403-0.52-11-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure6.1.2aRadialDistributionFunction Figure6.1.2b 6.2.EightPoints:Single-LetterWords.6.2.1.CSplit. StateEnergy:-1.35919229Latitude-Longitude Plot,Tetrahedron C1.512Radial Distribution Function,Tetrahedron C1100.5806-0.54-12-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMapFigure6.2.1aRadialDistributionFunctionFigure6.2.1b MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI327 6.2.2.FreeParticles. StateEnergy:-1.44791144Latitude-Longitude Plot,Monte Carlo, 8 points1.58Radial Distribution Function,Monte Carlo, 8 points7160.55043-0.52-11-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure6.2.2a 6.3.26Points:Two-LetterWords.6.3.1.CGSplit. RadialDistributionFunction Figure6.2.2b StateEnergy:52.04024268Latitude-Longitude Plot,Tetrahedron CG1.590Radial Distribution Function,Tetrahedron CG180700.56005040-0.530-12010-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure6.3.1a 6.3.2.FreeParticles. RadialDistributionFunction Figure6.3.1b StateEnergy:51.26225521Latitude-Longitude Plot,Monte Carlo, 26 points1.512Radial Distribution Function,Monte Carlo, 26 points1100.5806-0.54-12-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMapFigure6.3.2a 6.4.98Points:Three-LetterWords. RadialDistributionFunctionFigure6.3.2b 328CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD 6.4.1.CGGSplit. StateEnergy:1218.58714521Latitude-Longitude Plot,Tetrahedron CGG1.5Radial Distribution Function,Tetrahedron CGG25012000.50150-0.5100-150-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure6.4.1a 6.4.2.FreeParticles. RadialDistributionFunction Figure6.4.1b StateEnergy:1210.13160347Latitude-Longitude Plot,Monte Carlo, 98 points1.590Radial Distribution Function,Monte Carlo, 98 points801700.56050040-0.53020-110-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure6.4.2a 7.TheOctahedronTree.7.1.SixPoints. RadialDistributionFunction Figure6.4.2b 7.1.1.Octahedron.TheoctahedronisanotherPlatonicsolid.Itisclearlyanequi-libriumandtheevidenceofMonteCarloexperiments(section7.1.2)indicatesitisalsoanenergyminimum. StateEnergy:-2.079441541679841.5121100.5806-0.54-12-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMapFigure7.1.2aRadialDistributionFunctionFigure7.1.2b MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI329 7.1.2.FreeParticles.Sixfreeparticlesmovetowardstheextremalstate,whichistheoctahedronconfigurationseeninsection7.1.2. StateEnergy:-2.07944143162953Latitude-Longitude Plot,Monte Carlo, 6 points1.512Radial Distribution Function,Monte Carlo, 6 points1100.5806-0.54-12-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure7.1.2a 7.2.14Points:Single-LetterWords.7.2.1.CSplit. RadialDistributionFunction Figure7.1.2b StateEnergy:6.29252876Latitude-Longitude Plot,Octahedron C1.5Radial Distribution Function,Octahedron C1200.515010-0.5-15-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure7.2.1a 7.2.2.FreeParticles. RadialDistributionFunction Figure7.2.1b StateEnergy:6.26082162Latitude-Longitude Plot,Monte Carlo, 14 points1.518Radial Distribution Function,Monte Carlo, 14 points161140.5121008-0.564-12-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMapFigure7.2.2a 7.3.50Points:Two-LetterWords. RadialDistributionFunctionFigure7.2.2b 330CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD 7.3.1.CGSplit. StateEnergy:266.54209732Latitude-Longitude Plot,Octahedron CG1.5140Radial Distribution Function,Octahedron CG11201000.580060-0.540-120-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure7.3.1a 7.3.2.FreeParticles. RadialDistributionFunction Figure7.3.1b StateEnergy:266.05829961Latitude-Longitude Plot,Monte Carlo, 50 points1.535130Radial Distribution Function,Monte Carlo, 50 points0.52502015-0.510-15-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure7.3.2a 7.4.194Points:Three-LetterWords.7.4.1.CGGSplit. RadialDistributionFunction Figure7.3.2b StateEnergy:5192.17477404Latitude-Longitude Plot,Octahedron CGG1.550045014003500.53000250200-0.515010050-1.5-3-2-101230Radial Distribution Function,Octahedron CGG-120406080100120140160180Latitude-LongitudeMapFigure7.4.1a 7.4.2.FreeParticles. RadialDistributionFunctionFigure7.4.1b MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI331 StateEnergy:5186.55694273Latitude-Longitude Plot,Monte Carlo, 194 points1.5Radial Distribution Function,Monte Carlo, 194 points20010.51500100-0.550-1-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure7.4.2aRadialDistributionFunction Figure7.4.2b 8.TheIcosahedronTree. 8.1.12Points. 8.1.1.Icosahedron.WithtwelvevorticesonehastwopolyhedronconfigurationsasprovidedbyCoxeter’sarrayofPlatonicsolidsandtheirduals[5].Thefirstoftheseistheicosahedron.Theicosahedronisnottheonlyconfigurationoftwelvevorticeswithanalyticallyknownpoints;anotherconfigurationisthecuboctahedron.ThecuboctahedronisnotfoundbyaMonteCarloexperimentwithfreeparticles. StateEnergy:2.53542345606662Latitude-Longitude Plot,Icosahedron1.530Radial Distribution Function,Icosahedron1250.520015-0.510-15-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure8.1.1aRadialDistributionFunction Figure8.1.1b 8.1.2.FreeParticles.Twelvefreeparticlesmovetowardstheicosahedronshape.Thoughthelatitude-longitudeplotsarenotobviouslyidentical,theirradialdistri-butionfunctionsmatchpreciselyandtheirenergiesareverynearlyequal. 332CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD StateEnergy:2.53542467Latitude-Longitude Plot,Monte Carlo, 12 points1.530Radial Distribution Function,Monte Carlo, 12 points1250.520015-0.510-15-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure8.1.2a 8.2.32Points:Single-LetterWords.8.2.1.CSplit. RadialDistributionFunction Figure8.1.2b StateEnergy:89.04326633Latitude-Longitude Plot,Icosahedron C1.560Radial Distribution Function,Icosahedron C1500.540030-0.520-110-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure8.2.1a 8.2.2.FreeParticles. RadialDistributionFunction Figure8.2.1b StateEnergy:89.04373997Latitude-Longitude Plot,Monte Carlo, 32 points1.545Radial Distribution Function,Monte Carlo, 32 points401350.53025020-0.51510-15-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure8.2.2a 8.3.122Points:Two-LetterWords.8.3.1.CGSplit. RadialDistributionFunction Figure8.2.2b MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI333 StateEnergy:1942.05613972Latitude-Longitude Plot,Icosahedron CG1.5400Radial Distribution Function,Icosahedron CG13503000.52500200-0.5150100-150-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure8.3.1a 8.3.2.FreeParticles. RadialDistributionFunction Figure8.3.1b StateEnergy:1942.36355642Latitude-Longitude Plot,Monte Carlo, 122 points1.5120Radial Distribution Function,Monte Carlo, 122 points11000.580060-0.540-120-1.5-3-2-10123020406080100120140160180Latitude-LongitudeMap Figure8.3.2a 8.4.482Points:Three-LetterWords.8.4.1.CGGSplit. RadialDistributionFunction Figure8.3.2b StateEnergy:33965.73014674Latitude-Longitude Plot,Icosahedron CGG1.518001160014000.512001000800-0.5600400200-1.5-3-2-101230Radial Distribution Function,Icosahedron CGG0-120406080100120140160180Latitude-LongitudeMap Figure8.4.1a 8.4.2.FreeParticles. RadialDistributionFunction Figure8.4.1b 334CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD StateEnergy:33965.34803522Latitude-Longitude Plot,Monte Carlo, 482 points1.510009008000.57006000500400-0.5300-1200100-1.5-3-2-101230Radial Distribution Function,Monte Carlo, 482 points120406080100120140160180Latitude-LongitudeMap Figure8.4.2a 9.PolyhedronResults. RadialDistributionFunction Figure8.4.2b 9.1.SplitPolyhedronsandExtremalStates.Thevortexinteractionenergy,asoneexpectsfromconsiderationsofthemeanfieldtheory–orsimplyfromob-servingthatthenumberofparticlesisincreasingandthereforethenumberofpairsincreasingasthesquareofthenumberofpoints[2]–growsquadraticallyintermsofthenumberofvortices.ThisgrowthisindependentofwhetherthevorticesarearrangedattheverticesofapolyhedronorwhethertheyareallowedtofindaextremalstatebytheMonteCarloalgorithm,asindicatedbyfigures7and8.Thetablesinthissectionpresenttheminimumstatesforthefirstfewlengthsofgeodesicwordsbasedonthepolyhedronsofthetetrahedron,theoctahedron,andtheicosahedron.Thesefigures,eachPlatonicsolidswithfacescomposedoftriangles(withverticesuniformlyofdegreethree,four,andfive,respectively)andsoenjoyconsiderablerotationalsymmetry.Theyarealsoknowntobeextremalstatesfortheircorrespondingvortexproblemandaredynamicequilibriums.IneachtablethestartingpolyhedronandthegeodesicwordusedtogenerateaconfigurationofNpointsisgiven,andtheenergyofthepolyhedronasgeneratedbythatgeodesicwordisprovidedandcomparedtotheenergyoftheextremalstateasfoundbytheMonteCarlomethod(section2.1). Thepolyhedron-basedenergiesandtheMonteCarloextremalstateenergiesdisagreeinalmosteverycasebesidesthebasicpolyhedrons.SeveralpolyhedronconfigurationsapproachtheMonteCarloenergyclosely,andinonecase–theIcosahedronsplitbyCG–thepolyhedronenergyisbelowthatoftheMonteCarloenergy.ThisreflectsthattheMonteCarloalgorithmdoesquicklyreachapointneartheenergyminimum,butisslowtothenreachexactlytheenergyminimum.Thereisarelativelysmallregionofphasespacewhichneedstobereached,andafiniterunmayneverthelessnotbelongenoughtoreachit.InsupportofthatargumentonenotestheMonteCarloextremalstateenergyforthetetrahedron,octahedron,andicosahedronareveryslightlyhigherthanthepolyhedronideals,thoughtheMonteCarloextremalstatesareextremelynearthegeodescword-generatedpositions.Inthepolyhedronsgrownfromtheoctahedrontheagreementbetweenpolyhe-dronenergiesoflongerwordsasthefinalgeodesiclettersarereversedgrowsslightlybetter.IntheshapesgrownfromtheicosahedroneventheCGwordhasanagree-mentinenergiesaboutatenthofapercenttotheMonteCarlo-generatedextremalstateenergy.TheCGGstatedoesnotagreeastightlywiththeextremalstateenergy,butitisstillinexcellentagreement. MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI Energy from Polyhedron Configurations versus Number of Particles335 10710610510Energy104310210110110010210Number of Points3104PolyhedronConfigurationsFigure7.Thesystemenergyasafunctionofthenumberofpar-ticlesfortheexaminedpolyhedrons. TheradialdistributionfunctionasgeneratedbytheMonteCarloroutineisclosertoauniformdistribution–notethatthedistributionisclosetoasinusoidalcurve–whereastheradialdistributionfunctionsforpolyhedronsgeneratedbygeodesicwordshavefewerandrarerpeaks,amuchmorecrystallineconfiguration.9.2.PairwiseInterationEnergies.Fromobservingthattheenergyofthesys-temgrowsasthesquareofthenumberofparticles(asderivedbyBergersenetal[2])–thatis,thenumberofpairsofparticlesinthesystem–thequestionofwhattheaverageenergyofinteractionofapairmightbeisraised.Figures9and10andthetablesinthissubsectionrepresenttheenergiesofthesystemdividedbyN(N−1),bothforthepolyhedronsasgeneratedbythegeodesictreesgrownfromthetetrahedron,octahedron,andicosahedron,andfortheMonteCarloextremalstateenergyfoundforthecorrespondingnumberofpoints. Asmaybeexpectedfromthequadraticgrowthofenergyterms,oncethenum-berofpointsgrowsmoderatelylarge,thepairwiseenergyappearstoapproachaconstantapproximately0.15.Asmaybeexpectedfromtherelativelylowvariationinsystemenergiesdespitethenoncommutivityofcentroidandgeodesicsplitsthepairwiseenergydependsonlyslightlyonthegeodesicword. ThepairwiseMonteCarloenergytendstohaveaslightlylowervaluethanthatofthepolyhedron-basedconfiguration. Itisclearthatforanyfinitenumberofvorticesthesystemenergy–andthusthepairwiseenergy–maybemadearbitarilylarge,bytheexpedientofmovingat 336CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD Energy from Monte Carlo Run versus Number of Particles107106105104Energy10310210110010-110-210110210Number of Points3104MonteCarloextremalstateFigure8.Thesystemenergyasafunctionofthenumberofpar-ticlesfortheextremalstateasfoundbyaMonteCarloalgorithm.NTetrahedron4C8CG26CGG98NOctahedron8C14CG50CGG194 N123212248210823242 PolyhedronEnergyMonteCarloEnergy-1.72609243-1.72609239-1.35919229-1.4479114452.0402426851.262255211218.587145211210.13160347PolyhedronEnergyMonteCarloEnergy-2.07944154-2.079441436.292528766.26082162266.54209732266.058299615192.174774045186.55694273PolyhedronEnergyMonteCarloEnergy2.535423462.5354246789.0432663389.043739971942.056139721942.3635564233965.7301467433965.34803522176215.65351546175409.183189031602250.211728941598209.70411300 IcosahedronCCGCGGCCGCCCCGC MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI Energy per Particle Pair from Polyhedron Configurations versus Number of Particles337 100Energy per Particle Pair10-110-210110210Number of Points3104PolyhedronConfigurationsFigure9.Thesystemenergypernumberofpairsasafunctionofthenumberofparticlesfortheexaminedpolyhedrons. leastonepairofvorticessufficientlyclosetogether.Thisindicatesthatthoughbothpolyhedrons(ofmanydifferentshapes)andMonteCarlobasedextremalstatestendtowardsaveryuniformfinitepairwiseenergy,thispairwiseenergydoesneverthelessdependinsomewayonthedistributionofpoints.Itisnotsimplythecasethatasthenumberofpointsgrowsarbitrarilylargethepairwiseenergywillapproachapproximately0.15. Asshowninsection3,theenergyperpairofparticlesapproachesameanfieldvalueof−12(log(2)−1)asthenumberofparticlesgrowswithoutbound,andthisappearstobethelimitreachedbyboththeMonteCarlo-derivedextremalstateandbythepolyhedronconfigurationsdevelopedbythegeodesicwordsfromthebasicshapes. 9.3.EnergyOverage.Inthissubsection,figure11,andthecorrespondingtablesrepresenttheenergy‘overage,’theamountbywhichtheenergyofthepolyhedronconfigurationexceedstheMonteCarloextremalstateenergy.Withtheexceptionsofthebasestatesofthetetrahedron,octahedron,andicosahedron–andtheexcep-tionalcasementionedinsection9.1oftheicosahedronsplitbythegeodesicwordCG–theseoveragesareallpositive.ThepolyhedronenergiesaregreaterthantheMonteCarloextremalstateenergies. Severalofthevaluesforlownumbersofvorticesreturnnegativenumbers,re-flectingonlythattheMonteCarloextremalstateenergieswerenegative,andsothefractionofthepolyhedronenergyminusMonteCarloenergyovertheMonte 338CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD Pairwise Energy from Monte Carlo Run versus Number of Particles10010-1Energy per Particle Pairs10-210-310-410110210Number of Points3104MonteCarloextremalstateFigure10.ThesystemenergypernumberofpairsasafunctionofthenumberofparticlesfortheextremalstateasfoundbyaMonteCarloalgorithm.TetrahedronCCGCGG N482698 PairwisePolyhedronPairwiseMonteCarlo-0.14384103583-0.1438410325-0.02427129089-0.025855561430.080061911820.078865008020.128191368110.12730187287PairwisePolyhedronPairwiseMonteCarlo-0.06931471133-0.069314714330.034574333850.034400118790.108792672380.108595224330.138672474070.13852243317PairwisePolyhedronPairwiseMonteCarlo0.019207753480.019207762650.089761357190.089761834650.131557792960.131578617830.146503783380.146502135230.150657768370.149968266520.152488922650.15210438056 NOctahedron6C14CG50CGG194 N123212248210823242 IcosahedronCCGCGGCCGCCCCGC MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI339 TetrahedronCCGCGG NEnergyOverage40.000000023178-0.06127387874260.01517661419980.00698729106N123212248210823242 EnergyOverage-0.00000047724-0.00000531918-0.000158269390.000011250040.004597651680.00252814609 NOctahedron6C14CG50CGG194EnergyOverage-0.000000043280.005064373640.001818201920.00108315234 IcosahedronCCGCGGCCGCCCCGC 0Excess Energy in Polyhedron over Monte Carlo configurations versus Number of Points1010-110-2Energy Overage10-310-410-510-610-7101102103Number of VerticesFigure11.ThepercentagebywhichpolyhedronenergiesexceedtheMonteCarlo-generatedextremalstateenergiesasafunctionofthenumberofparticles. Carloenergyisnegative.Similarly–astheMonteCarloextremalstateenergyisnegativeforthetetrahedronextremalstate–the‘overage’isrecordedaspositiveeventhoughtheMonteCarloextremalstateismarginallyhigherthantheana-lyticallydeterminedtetrahedroncoordinates.TheexceptionallyhighoveragefromthetetrahedronsplitbyGisreflectiveoftheMonteCarloenergybeingasmallnumber,magnifyingthesizeofadifferencewhichisnotmuchgreaterthanthatofthetetrahedronsplitbyC. 340CHJANC.LIM,JOSEPHNEBUS,ANDSYEDM.ASSAD Asafunctionofwordlengththeenergyoverageappearstodeclineaseitherthenumberofpointsgrowsgreaterorthewordlengthincreases–sincethetraitsarecorrelatedtheavailabledatadoesnotdistinguishbetweenthetwo.TheavailablenumericalexperimentsdonotformaclearbodyofevidenceindicatingthedifferencebetweenpolyhedronenergiesandMonteCarloextremalstateenergieswillbecomearbitrarilysmallasthenumberofpointsincreases.Theobservationsofsections9.1and9.2indicatingthesteadygrowthofenergywiththenumberofpointssuggestssuggestsonlythattheenergiesofpolyhedronsandoftheextremalstatesshouldgrowatthesamerateswiththenumberofpoints. 10.Conclusions.ThetraditionaluseofaMonteCarloalgorithmtofindstatis-ticalequilibriumsextendseasilytofindingtheenergyminimumforanN-bodyproblem.SuchMonteCarloapproachesprovideacomputationallyrapidmethodofreachingaconfigurationofpointswhichisclosetotheextremalstatefor,inthiscase,thelogarithmicpotential.Ithasweaknessesinlocatingtheprecisecoordi-natesofaextremalstate,buttheeaseofimplementationandspeedofproducingapproximateresultsleavesitstillapotenttool. Theradialdistributionfunctionisaconvenienttooltodeterminequicklythattwoconfigurationsofpointsonthespherearenotequivalent,aswasdoneinshow-ingthatthecentroidandgeodesicsplitsonthespheredonotcommute.Itisnotassertedthattheradialdistributionfunctioncanbeusedtoprovetwoconfigura-tionsareequivalent,buttheabilitytoruleoutapparentequivalencesisitselfofinterest,andtheextensionoftheradialdistributionfunctiontodetermininganypairwise-definedfunction,suchaspotentialenergy,suggeststhefunctionmayhaveconsiderableutility. Polyhedronsmaybeconstructedasthe‘splittings’ofsimplerpolyhedrons,andtheconstructionofcomplexshapesfromsimplepolyhedronsknowntobeofinter-estresultsinshapeswhichmayhaveconsiderablestructure–withmanypointsnearoneanotherorconfinedtoarelativelysmallportionofthesphere,configura-tionsfarfromhomogenous–yetwithouttheenergygrowingmorethanmarginallygreaterthanwhattheMonteCarloalgorithmsuggestsistheglobalenergymini-mum.Howothersplittingoperationsmayfitintothissortofalgorithm,bothtogeneratepolyhedronsandhowwelltheirenergiesfitthoseoftheMonteCarloandthecentroidandgeodesicsplits,isaninterestingquestiondeservingofexploration.Theplotsofenergyperparticlepairinfigures9and10agreewiththecalculationofBergersenetal[2]thatameanfieldlimitfortheenergyofthislogarithmicinteractioncanbeexpectedtohold,eventhoughasBergersenetalcalculatethestandardthermodynamiclimitisfoundnottobevalid. TheabilityofMonteCarloalgorithmstogeneratestatesnearanequilibrium,eitherforthecaseoffreeparticlesorforconstrainedparticles,offersavenuesforfurtherresearchinpairwiseinteractionsandwillbeexaminedinacomingpaper[11].Similarlytheuseofgeodesicwordsthatbeginfrombasicshapestobuildcon-figurationswithmanymorepointssuggestsanotheravenueforstudyingequilibriumconfigurationsbothforthepointsonthesurfaceofthesphereandforpointsontheplane,arelatedproblemalsotobeexaminedinanotherpaper[11]. Acknowledgement ThisresearchwaspartiallysupportedbygrantR-151-000-015-112attheNa-tionalUniversityofSingapore.Wewouldliketothankthefacultyandstaffof MONTE-CARLOANDPOLYHEDRON-BASEDSIMULATIONSI341 ComputationalScienceattheNUSandtheDeanofScienceoftheNUSfortheirhospitalityandsupportofthiswork. REFERENCES [1]EricLewinAltschuler,TimothyJ.Williams,EdwardR.Ratner,RobertTipton,Richard Stong,FaridDowla,andFrederickWooten.PossibleMinimumLatticeConfigurationsforThompson’sProblemofChargesonaSphere.PhysicalReviewLettersVolume78Number14,(7April1997),2681-2685 [2]B.Bergersen,D.Boal,andP.Palffy-Muhoray,Equilibriumconfigurationsofparticlesona sphere:thecaseoflogarithmicinteractions.J.Phys.A:Math.Gen.27(1994)2579-2586.[3]JohnR.Baumgardner,PaulO.Frederickson,IcosahedronDiscretizationoftheTwo-Sphere. SIAMJournalonNumericalAnalysis22(December1985),1107-1115. [4]M.Bowick,A.Cacciuto,D.R.Nelson,andA.Traesset.CrystallineOrderonaSphere andtheGeneralizedThompsonProblem.http://arxiv.org/PScache/cond-mat/pdf/0206/0206144.pdf [5]H.S.M.Coxeter,LL.D,FRS,RegularPolytopes2ndEdition.MacMillanCompany,New York,1963. [6]J.P.HansenandI.R.McDonald,Theoryofsimpleliquids,2nded.,AcademicPress,London, 1986. [7]Y.KimuraandH.Okamoto,Vortexmotiononasphere.J.Phys.Soc.Japan561987,4203-4206. [8]ChjanC.Lim,Relativeequilibriaofsymmetricn-bodyproblemsonthesphere:Inverseand Directresults.Comm.PureandAppliedMathLI1998,341-371. [9]ChjanC.Lim,ExactSolutionsofanenergy-enstrophytheoryforthebarotropicvorticity equationonarotatingsphere.PhysicaA,February2001,131-158. [10]ChjanLim,JamesMontaldi,MarkRoberts,RelativeEquilibriaofPointVorticesonthe Sphere.PhysicaD148(2001),97-135. [11]ChjanC.Lim,JosephNebus,SyedM.Assad.AMonteCarloAlgorithmforFreeandCoaxial RingExtremalStatesoftheVortexN-BodyProblemonaSphere.Submittedforpublication.[12]PaulK.Newton,TheN-VortexProblem:AnalyticalTechniques.Springer,NewYork,2001.[13]E.B.Saff,A.B.J.Kuijlars.DistributingManyPointsontheSphere.MathematicalIntelli-gencer,v19,(1997),p5-11 [14]DaudSutton,PlatonicandArchimedeanSolids,WalkerandCompany,NewYork,2002. ReceivedNovember2002;revisedFebruary2003. DepartmentofMathematicalSciences,RensselaerPolytechnicInstituteE-mailaddress:limc@rpi.edu DepartmentofMathematicalSciences,RensselaerPolytechnicInstitute,Depart-mentofComputationalScience,NationalUniveristyofSingaporeNationalUniversityofSingapore.E-mailaddress:nebusj@rpi.edu 因篇幅问题不能全部显示,请点此查看更多更全内容