第1章 随机事件及其概率
nPm(1)排列组合公式 nCmm! 从m个人中挑出n个人进行排列的可能数。 (mn)!m! 从m个人中挑出n个人进行组合的可能数。 n!(mn)!(2)加法和乘法原理 加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用来表示。 基本事件的全体,称为试验的样本空间,用表示。 一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。 为必然事件,Ø为不可能事件。 不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 ①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):(3)一些常见排列 (4)随机试验和随机事件 (5)基本事件、样本空间和事件 AB (6)事件的关系与运算 如果同时有AB,BA,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:AB,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者AB,它表示A发生而B不发生的事件。 A、B同时发生:AB,或者AB。AB=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。 1
-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的事件。互斥未必对立。 ②运算: 结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC) 德摩根率:i1AAii1i ABAB,ABAB (7)概率的公理化定义 设为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω) =1 3° 对于两两互不相容的事件A1,A2,…有 PAiP(Ai)i1i1 常称为可列(完全)可加性。 则称P(A)为事件A的概率。 1,2n, 1° 2° P(1)P(2)P(n)(8)古典概型 1。 n设任一事件A,它是由1,2m组成的,则有 P(A)=(1)(2)(m) =P(1)P(2)P(m) mA所包含的基本事件数 基本事件总数n(9)几何概型 若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A, P(A)(10)加法公式 L(A)。其中L为几何度量(长度、面积、体积)。 L()P(A+B)=P(A)+P(B)-P(AB) 当AB不相容P(AB)=0时,P(A+B)=P(A)+P(B) 当AB独立,P(AB)=P(A)P(B), P(A+B)=P(A)+P(B)-P(A)P(B) P(A-B)=P(A)-P(AB) 当BA时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B)=1- P(B) 定义 设A、B是两个事件,且P(A)>0,则称(11)减法公式 (12)条件概率 P(AB)为事件A发生条件下,事P(A)1
件B发生的条件概率,记为P(B/A)P(AB)。 P(A)(13)乘法公式 条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如P(Ω/B)=1P(B/A)=1-P(B/A) 乘法公式:P(AB)P(A)P(B/A) 更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有 P(A1A2…An)P(A1)P(A2|A1)P(A3|A1A2)……P(An|A1A2…An1)。 ①两个事件的独立性 设事件A、B满足P(AB)P(A)P(B),则称事件A、B是相互独立的。 若事件A、B相互独立,且P(A)0,则有 P(B|A)P(AB)P(A)P(B)P(B)P(A)P(A) (14)独立性 若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立。 必然事件和不可能事件Ø与任何事件都相互独立。 Ø与任何事件都互斥。 ②多个事件的独立性 设ABC是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C) 那么A、B、C相互独立。 对于n个事件类似。 设事件B1,B2,,Bn满足 1°B1,B2,,Bn两两互不相容,P(Bi)0(i1,2,,n), 2°则有 n(15)全概公式 ABii1, P(A)P(B1)P(A|B1)P(B2)P(A|B2)P(Bn)P(A|Bn)。 全概率公式解决的是多个原因造成的结果问题,全概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式; 设事件B1,B2,…,Bn及A满足 1° B1,B2,…,Bn两两互不相容,P(Bi)>0,i1,2,…,n, 2° 则 nABii1,P(A)0, (16)贝叶斯公式 P(Bi/A)P(Bi)P(A/Bi)P(B)P(A/B)jjj1n,i=1,2,…n。 此公式即为贝叶斯公式。 P(Bi),(i1,2,…,n),通常叫先验概率。P(Bi/A),(i1,2,…,1
n),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。将试验可看成分为两步做,如果求在第二步某事件发生条件下第一步某事件的概率,就用贝叶斯公式。 我们作了n次试验,且满足 每次试验只有两种可能结果,A发生或A不发生; n次试验是重复进行的,即A发生的概率每次均一样; 每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的。 这种试验称为伯努利概型,或称为n重伯努利试验。 用p表示每次试验A发生的概率,则A发生的概率为1pq,用Pn(k)表示n重伯努利试验中A出现k(0kn)次的概率, (17)伯努利概型 Pn(k)Cnpkqnkk,k0,1,2,,n。
1
第二章 随机变量及其分布
(1)离散型随机变量的分布律 设离散型随机变量X的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为 P(X=xk)=pk,k=1,2,…, 则称上式为离散型随机变量X的概率分布或分布律。有时也用分布列的形式给出: Xx1,x2,,xk,|P(Xxk)p1,p2,,pk,。 显然分布律应满足下列条件: (1)pk0,k1,2,, (2)k1(2)连续型随机变量的分布密度 pk1。 设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实数x,有 F(x)f(x)dxx, 则称X为连续型随机变量。f(x)称为X的概率密度函数或密度函数,简称概率密度。 密度函数具有下面4个性质: 1、 f(x)0。 2、 f(x)dx1。 3、P(x1Xx2)F(x2)F(x1)(3)离散与连续型随机变量的关系 x2x1f(x)dx 4、P(x=a)=0,a为常数,连续型随机变量取个别值的概率为0 P(Xx)P(xXxdx)f(x)dx 积分元f(x)dx在连续型随机变量理论中所起的作用与P(Xxk)pk在离散型随机变量理论中所起的作用相类似。 1
(4)分布函数 设X为随机变量,x是任意实数,则函数 F(x)P(Xx) 称为随机变量X的分布函数,本质上是一个累积函数。 P(aXb)F(b)F(a) 可以得到X落入区间(a,b]的概率。分布函数F(x)表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 0F(x)1, x; 2° F(x)是单调不减的函数,即x1x2时,有 F(x1)F(x2); 3° F()limF(x)0, F()limF(x)1; xx4° F(x0)F(x),即F(x)是右连续的; 5° P(Xx)F(x)F(x0)。 对于离散型随机变量,F(x)xkxxpk; 对于连续型随机变量,F(x)(5)八大分布 0-1分布 二项分布 f(x)dx 。 P(X=1)=p, P(X=0)=q 在n重贝努里试验中,设事件A发生的概率为p。事件A发生的次数是随机变量,设为X,则X可能取值为0,1,2,,n。 kP(Xk)Pn(k)Cnpkqnk, 其中q1p,0p1,k0,1,2,,n, 则称随机变量X服从参数为n,p的二项分布。记为X~B(n,p)。 当n1时,P(Xk)pqk1k,k0.1,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。 1