经典的例子:输入信号为:
d
=
[
d
0
,
d
1
,
d
2
,
d
3
]
T
\ d=[d{_{0}},d{_{1}},d{_{2}},d{_{3}}]^{T} \,
d=[d0,d1,d2,d3]T
卷积核为:
g
=
[
g
0
,
g
1
,
g
2
]
T
\ g=[g{_{0}},g{_{1}},g{_{2}}]^{T} \,
g=[g0,g1,g2]T
卷积核指的是图像处理时,给定输入图像,输入图像中一个小区域中像素加权后成为输出图像中的每个对应的元素,权值由一个函数定义,这个函数就是卷积核。
根据一维wingoard卷积运算的定义可知:
F
(
2
,
3
)
=
[
d
0
d
1
d
2
d
1
d
2
d
3
]
[
g
0
g
1
g
2
]
=
[
d
0
g
0
+
d
1
g
1
+
d
2
g
2
d
1
g
0
+
d
2
g
1
+
d
3
g
2
]
=
[
r
0
r
1
]
\ F(2,3)=\left[\begin{matrix}d_{_0}&d_{_1}&d_{_2}\\ d_{_1}&d_{_2}&d_{_3}\end{matrix} \right]\left[\begin{matrix} g_{_0}\\ g_{_1}\\g_{_2} \end{matrix} \right]=\left[ \begin{matrix} d_{_0}g_{_0}+d_{_1}g_{_1}+d_{_2}g_{_2}\\d_{_1}g_{_0}+d_{_2}g_{_1}+d_{_3}g_{_2} \end{matrix} \right]=\left[\begin{matrix}r_{_0}\\r_{_1} \end{matrix}\right] \,
F(2,3)=[d0d1d1d2d2d3]⎣⎡g0g1g2⎦⎤=[d0g0+d1g1+d2g2d1g0+d2g1+d3g2]=[r0r1]
首先证明
F
(
2
,
3
)
=
[
d
0
g
0
+
d
1
g
1
+
d
2
g
2
d
1
g
0
+
d
2
g
1
+
d
3
g
2
]
=
[
m
1
+
m
2
+
m
3
m
2
−
m
3
−
m
4
]
\ F(2,3)=\left[\begin{matrix}d_{_0}g_{_0}+d_{_1}g_{_1}+d_{_2}g_{_2}\\d_{_1}g_{_0}+d_{_2}g_{_1}+d_{_3}g_{_2}\end{matrix}\right]=\left[\begin{matrix} m_{_1}+m_{_2}+m_{_3}\\m_{_2}-m_{_3}-m_{_4}\end{matrix}\right] \,
F(2,3)=[d0g0+d1g1+d2g2d1g0+d2g1+d3g2]=[m1+m2+m3m2−m3−m4]
其中:
m
1
=
(
d
0
−
d
2
)
g
0
m
2
=
(
d
1
+
d
2
)
g
0
+
g
1
+
g
2
2
m
3
=
(
d
2
−
d
1
)
g
0
−
g
1
+
g
2
2
m
4
=
(
d
1
−
d
3
)
g
2
\ m_{1}=(d_{0}-d_{2})g_{0} \quad\quad\quad m_{2}=(d_{1}+d_{2})\frac{g_{0}+g_{1}+g_{2}}{2}\\ m_{3}=(d_{2}-d_{1})\frac{g_{0}-g_{1}+g_{2}}{2} \quad m_{4}=(d_{1}-d_{3})g_{2} \,
m1=(d0−d2)g0m2=(d1+d2)2g0+g1+g2m3=(d2−d1)2g0−g1+g2m4=(d1−d3)g2
则
m
1
+
m
2
+
m
3
=
(
d
0
−
d
2
)
g
0
+
(
d
1
+
d
2
)
g
0
+
g
1
+
g
2
2
+
(
d
2
−
d
1
)
g
0
−
g
1
+
g
2
2
=
g
0
(
d
0
−
d
2
+
d
1
+
d
2
2
+
d
2
−
d
1
2
)
+
g
1
(
d
1
+
d
2
2
−
d
2
−
d
1
2
)
+
g
2
(
d
1
+
d
2
2
+
d
2
−
d
1
2
)
=
g
0
d
0
+
g
1
d
1
+
g
2
d
2
\ m_{1}+m_{2}+m_{3}=\\(d_{0}-d_{2})g_{0}+(d_{1}+d_{2})\frac{g_{0}+g_{1}+g_{2}}{2}+(d_{2}-d_{1})\frac{g_{0}-g_{1}+g_{2}}{2}=\\g_{0}(d_{0}-d_{2}+\frac{d_{1}+d_{2}}{2}+\frac{d_{2}-d_{1}}{2})+g_{1}(\frac{d_{1}+d_{2}}{2}-\frac{d_{2}-d_{1}}{2})+g_{2}(\frac{d_{1}+d_{2}}{2}+\frac{d_{2}-d_{1}}{2})\\=g_{0}d_{0}+g_{1}d_{1}+g_{2}d_{2} \,
m1+m2+m3=(d0−d2)g0+(d1+d2)2g0+g1+g2+(d2−d1)2g0−g1+g2=g0(d0−d2+2d1+d2+2d2−d1)+g1(2d1+d2−2d2−d1)+g2(2d1+d2+2d2−d1)=g0d0+g1d1+g2d2
m
2
−
m
3
−
m
4
=
(
d
1
+
d
2
)
g
0
+
g
1
+
g
2
2
−
(
d
2
−
d
1
)
g
0
−
g
1
+
g
2
2
−
(
d
1
−
d
3
)
g
2
=
g
0
(
d
1
+
d
2
2
−
d
2
−
d
1
2
)
+
g
1
(
d
1
+
d
2
2
+
d
2
−
d
1
2
)
+
g
2
(
d
1
+
d
2
2
−
d
2
−
d
1
2
−
(
d
1
−
d
3
)
)
=
g
0
d
1
+
g
1
d
2
+
g
2
d
3
\ m_{2}-m_{3}-m_{4}=\\(d_{1}+d_{2})\frac{g_{0}+g_{1}+g_{2}}{2} -(d_{2}-d_{1})\frac{g_{0}-g_{1}+g_{2}}{2}-(d_{1}-d_{3})g_{2} =\\g_{0}(\frac{d_{1}+d_{2}}{2}-\frac{d_{2}-d_{1}}{2})+ g_{1}(\frac{d_{1}+d_{2}}{2}+\frac{d_{2}-d_{1}}{2})+ g_{2}(\frac{d_{1}+d_{2}}{2}-\frac{d_{2}-d_{1}}{2}-(d_{1}-d_{3}))\\=g_{0}d_{1}+g_{1}d_{2}+g_{2}d_{3} \,
m2−m3−m4=(d1+d2)2g0+g1+g2−(d2−d1)2g0−g1+g2−(d1−d3)g2=g0(2d1+d2−2d2−d1)+g1(2d1+d2+2d2−d1)+g2(2d1+d2−2d2−d1−(d1−d3))=g0d1+g1d2+g2d3
由此可以证明: F ( 2 , 3 ) = [ d 0 g 0 + d 1 g 1 + d 2 g 2 d 1 g 0 + d 2 g 1 + d 3 g 2 ] = [ m 1 + m 2 + m 3 m 2 − m 3 − m 4 ] \\\ F(2,3)=\left[\begin{matrix}d_{_0}g_{_0}+d_{_1}g_{_1}+d_{_2}g_{_2}\\d_{_1}g_{_0}+d_{_2}g_{_1}+d_{_3}g_{_2}\end{matrix}\right]=\left[\begin{matrix} m_{_1}+m_{_2}+m_{_3}\\m_{_2}-m_{_3}-m_{_4}\end{matrix}\right] \, F(2,3)=[d0g0+d1g1+d2g2d1g0+d2g1+d3g2]=[m1+m2+m3m2−m3−m4]
F
(
2
,
3
)
=
A
T
.
M
,
\ F(2,3)=A^{T}.M, \,
F(2,3)=AT.M,其中
M
=
[
m
1
m
2
m
3
m
4
]
\ M=\left[\begin{matrix} m_{1}\\m_{2}\\m_{3}\\m_{4}\end{matrix}\right]\,
M=⎣⎢⎢⎡m1m2m3m4⎦⎥⎥⎤;
由此可以推出:
F
(
2
,
3
)
=
[
m
1
+
m
2
+
m
3
m
2
−
m
3
−
m
4
]
=
[
1
1
1
0
0
1
−
1
−
1
]
[
m
1
m
2
m
3
m
4
]
=
A
T
.
M
\ F(2,3)=\left[\begin{matrix} m_{1}+m_{2}+m_{3}\\ m_{2}-m_{3}-m_{4}\end{matrix}\right] =\left[\begin{matrix}1 \quad1\quad1\quad0\\0\quad1\quad-1\quad-1\end{matrix}\right]\left[\begin{matrix} m_{1}\\m_{2}\\m_{3}\\m_{4}\end{matrix}\right]=A^{T}.M \,
F(2,3)=[m1+m2+m3m2−m3−m4]=[111001−1−1]⎣⎢⎢⎡m1m2m3m4⎦⎥⎥⎤=AT.M
则
A
T
=
[
1
1
1
0
0
1
−
1
−
1
]
\ A^{T}=\left[\begin{matrix} 1 \quad1\quad1\quad0\\0\quad1\quad-1\quad-1\end{matrix}\right]\,
AT=[111001−1−1];
又
M
=
[
(
G
⋅
g
)
⊙
(
B
T
⋅
d
)
]
\ M=[(G\cdot g)\odot(B^{T}\cdot d)] \,
M=[(G⋅g)⊙(BT⋅d)]
且
M
=
[
m
1
=
(
d
0
−
d
2
)
g
0
m
2
=
(
d
1
+
d
2
)
g
0
+
g
1
+
g
2
2
m
3
=
(
d
2
−
d
1
)
g
0
−
g
1
+
g
2
2
m
4
=
(
d
1
−
d
3
)
g
2
]
\ M=\left[\begin{matrix} m_{1}=(d_{0}-d_{2})g_{0} \\ m_{2}=(d_{1}+d_{2})\frac{g_{0}+g_{1}+g_{2}}{2}\\ m_{3}=(d_{2}-d_{1})\frac{g_{0}-g_{1}+g_{2}}{2} \\ m_{4}=(d_{1}-d_{3})g_{2}\\ \end{matrix}\right] \,
M=⎣⎢⎢⎡m1=(d0−d2)g0m2=(d1+d2)2g0+g1+g2m3=(d2−d1)2g0−g1+g2m4=(d1−d3)g2⎦⎥⎥⎤
则
G
⋅
g
=
[
g
0
g
0
+
g
1
+
g
2
2
g
0
−
g
1
+
g
2
2
g
2
]
=
[
1
0
0
1
2
1
2
1
2
1
2
−
1
2
1
2
0
0
1
]
[
g
0
g
1
g
2
]
\ G\cdot g=\left[\begin{matrix} g_{0} \\ \frac{g_{0}+g_{1}+g_{2}}{2}\\ \frac{g_{0}-g_{1}+g_{2}}{2} \\ g_{2}\\ \end{matrix}\right]=\left[\begin{matrix} 1 \quad0\quad0\\\frac{1}{2} \quad\frac{1}{2}\quad\frac{1}{2}\\\frac{1}{2} \quad\frac{-1}{2}\quad\frac{1}{2} \\ 0 \quad0\quad1 \end{matrix}\right]\left[\begin{matrix} g_{0}\\g_{1}\\g_{2}\end{matrix}\right] \,
G⋅g=⎣⎢⎢⎡g02g0+g1+g22g0−g1+g2g2⎦⎥⎥⎤=⎣⎢⎢⎡100212121212−121001⎦⎥⎥⎤⎣⎡g0g1g2⎦⎤
由此可得:
G
=
[
1
0
0
1
2
1
2
1
2
1
2
−
1
2
1
2
0
0
1
]
\ G=\left[\begin{matrix} 1 \quad0\quad0\\\frac{1}{2} \quad\frac{1}{2}\quad\frac{1}{2}\\\frac{1}{2} \quad\frac{-1}{2}\quad\frac{1}{2} \\ 0 \quad0\quad1 \end{matrix}\right]\,
G=⎣⎢⎢⎡100212121212−121001⎦⎥⎥⎤
同理可以推导
B
\ B\,
B参数如下:
B
T
⋅
d
=
[
d
0
−
d
2
d
1
+
d
2
d
2
−
d
1
d
1
−
d
3
]
=
[
1
0
−
1
0
0
1
1
0
0
−
1
1
0
0
1
0
−
1
]
[
d
0
d
1
d
2
d
3
]
\ B^{T}\cdot d=\left[\begin{matrix}d_{0}-d_{2} \\ d_{1}+d_{2}\\d_{2}-d_{1} \\ d_{1}-d_{3} \end{matrix}\right]=\left[\begin{matrix} 1 \quad0\quad-1\quad0\\0\quad1\quad1\quad0 \\0\quad-1\quad1\quad0 \\0\quad1\quad0\quad-1 \end{matrix}\right] \left[\begin{matrix} d_{0}\\d_{1}\\d_{2}\\d_{3}\end{matrix}\right] \,
BT⋅d=⎣⎢⎢⎡d0−d2d1+d2d2−d1d1−d3⎦⎥⎥⎤=⎣⎢⎢⎡10−1001100−110010−1⎦⎥⎥⎤⎣⎢⎢⎡d0d1d2d3⎦⎥⎥⎤
由此可得:
B
T
=
[
1
0
−
1
0
0
1
1
0
0
−
1
1
0
0
1
0
−
1
]
\ B^{T}=\left[\begin{matrix} 1 \quad0\quad-1\quad0\\0\quad1\quad1\quad0 \\0\quad-1\quad1\quad0 \\0\quad1\quad0\quad-1 \end{matrix}\right]\,
BT=⎣⎢⎢⎡10−1001100−110010−1⎦⎥⎥⎤
综上完成了一维winogard算法的证明以及参数的含义和推导。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- nryq.cn 版权所有 赣ICP备2024042798号-6
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务