import numpy as np
import cv2
def get_contour_closed_coord_info(mask):
# 找到轮廓,这里使用RETR_TREE以检索所有轮廓和它们的层次结构
contours, hierarchy = cv2.findContours(
mask,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_NONE # 获取所有轮廓点
)
contour_closed_coord_dict = {}
# 遍历所有轮廓
for i, contour in enumerate(contours):
# 检查轮廓是否为内部轮廓(即闭环部分)
if hierarchy[0][i][3] != -1:
# 轮廓是闭环的,可能是内部轮廓或子轮廓
# 获取闭环的坐标点信息
closed_contour_points = contour.reshape(-1, 2)
contour_closed_coord_dict[i] = closed_contour_points
return contour_closed_coord_dict
if __name__ == "__main__":
mask_path = ".test.png"
# 读取图像
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
# 根据需要设置
# mask = cv2.inRange(mask, 100, 255)
# 社区版python-opencv才行
mask = cv2.ximgproc.thinning(
mask,
# thinningType=cv2.ximgproc.THINNING_ZHANGSUEN
thinningType=cv2.ximgproc.THINNING_GUOHALL,
)
contour_closed_coord_dict = get_contour_closed_coord_info(mask)
mask_contour_closed = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
mask_visual_path = "./test_visual.png"
for i, contour_points in contour_closed_coord_dict.items():
mask_contour_closed[contour_points[:, 1], contour_points[:, 0]] = (255, 255, 0)
cv2.imwrite(mask_visual_path, mask_contour_closed)
因篇幅问题不能全部显示,请点此查看更多更全内容